搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于亚开温区的极低温绝热去磁制冷机

王昌 李珂 沈俊 戴巍 王亚男 罗二仓 沈保根 周远

引用本文:
Citation:

用于亚开温区的极低温绝热去磁制冷机

王昌, 李珂, 沈俊, 戴巍, 王亚男, 罗二仓, 沈保根, 周远

Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region

Wang Chang, Li Ke, Shen Jun, Dai Wei, Wang Ya-Nan, Luo Er-Cang, Shen Bao-Gen, Zhou Yuan
PDF
HTML
导出引用
  • 随着空间观测、量子技术等前沿科研领域的发展, 亚开温区的极低温制冷需求日益增加. 本文设计并研制了一台极低温单级绝热去磁制冷机. 该制冷机由GM型制冷机提供约3 K热沉, 以钆镓石榴石为磁热工质, 由超导线圈提供最大为4 T的磁场, 通过绝热去磁, 实验最低温度可达470 mK. 在恒温控制模式下, 可在1 K下提供2.7 J冷量, 温度波动小于0.5 mK, 绝热去磁制冷的第二热力学效率为57%; 在0.8 K下, 制冷量为1.2 J. 该制冷机将作为50 mK温区三级绝热去磁制冷系统中的第一级, 在1 K下提供0.7 mW制冷功率. 本研究为进一步开展极低温多级连续绝热去磁制冷奠定了基础.
    With the development of space observation, quantum technology and other frontier scientific research fields, the demand for ultra-low temperature refrigeration in sub-Kelvin region is increasing. Compared with dilution refrigeration and sorption refrigeration, adiabatic demagnetization refrigeration (ADR) has the outstanding advantages of high efficiency, compact, gravity independence and accessibility of working materials, which make ADR a promising technology for sub-Kelvin cooling.A single-stage ultro-low temperature adiabatic demagnetization refrigerator is designed and developed. The thermodynamic principle and quantitative analysis are presented, from the macroscopic and microcosmic view, and operating results show good agreement with the theoretical value.This refrigerator is precooled to 3 K by a GM-type refrigerator, with 252 g gadolinium gallium garnet (monocrystalline) used as a working medium. The maximum magnetic field of 4 T is provided by a superconducting coil. Flexible heat connection is used between the pre-cooler and ADR, so heat generated by vibration decreases. From (3 K, 4 T), the lowest temperature can reach 0.47 K by adiabatic demagnetization, which is consistent with the result drawn from the entropy data. In a constant-temperature-control mode, the demagnetization rate is controlled by a feedback loop, so the temperature can be held in the presence of a load. A cooling capacity of 2.7 J is provided at 1 K, with temperature fluctuation being lower than 0.5 mK, and the second thermodynamic efficiency of adiabatic demagnetization refrigeration is 57%. at 0.8 K, the cooling capacity is 1.2 J.Future work on improving the performance includes the improving of the on-off ratio of the heat switch, so, the irreversible loss caused by the heat transfer temperature difference in conduction state can be reduced. Improving the heat transfer performance of the salt pill, the heat can be ejected in a shorter period.This refrigerating machine is the first Chinese adiabatic demagnetization refrigeration system that can be operated in circulation, which is expected to be the 1st stage of a three-stage adiabatic demagnetization refrigeration system in a 50 mK temperature zone. This study lays a foundation for further developing continuous multistage adiabatic demagnetization refrigeration at ultra-low temperature.
      通信作者: 沈俊, jshen@mails.ipc.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51925605)和中国科学院科研仪器设备研制项目(批准号: GJJSTD20190001)资助的课题
      Corresponding author: Shen Jun, jshen@mails.ipc.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51925605) and the Scientific Instrument Developing Project of the Chinese Academy of Sciences (Grant No. GJJSTD20190001)
    [1]

    Collaudin B, Rando N 2000 Cryogenics 40 797Google Scholar

    [2]

    Coccia E 2000 Physica B 280 525Google Scholar

    [3]

    Osheroff D D, Richardson R C, Lee D M 1972 Phys. Rev. Lett. 29 88Google Scholar

    [4]

    Hornibrook J M, Colless J I, Lamb I D C, et al. 2014 Phys. Rev. Appl. 3 024010Google Scholar

    [5]

    Pobell F 2006 Matters and Methods at Low Temperature (New York: Acid-free Paper) pp203, 209, 206

    [6]

    De Haas W J, Wiersma E C, Kramers H A 1933 Physica 1 1Google Scholar

    [7]

    Giauque W F, MacDougall D P 1933 Phys. Rev. 43 768

    [8]

    Kurti N, Simon F 1934 Nature 133 907Google Scholar

    [9]

    Shirron P, Canavan E, Dipirro M, Jackson M, King T, Panek J, Tuttle J 2001 Cryogenics 41 789Google Scholar

    [10]

    Shirron P J 2014 Cryogenics 62 130Google Scholar

    [11]

    万绍宁, 容锡燊 1987 低温 2 133Google Scholar

    Wan S N, Rong X S 1987 Chin. J. Low Temp. 2 133Google Scholar

    [12]

    Wikus P, Canavan E, Heine S T, et al. 2014 Cryogenics. 62 150Google Scholar

    [13]

    Fisher R A, Brodale G E, Hornung E W, Giauque W F 1973 J. Chem. Phys. 59 4652Google Scholar

    [14]

    Goshorn D P, Onn D G, Remeika J P 1977 Phys. Rev. B 15 3527Google Scholar

    [15]

    Numazawa T, Kamiya K, Shirron P, DiPirro M, Matsumoto K 2006 AIP Conf. Proc. 850 1579Google Scholar

    [16]

    Diego A P B, Jean-Maec D, Christophe M, Emmanuelle B, Jean-Pascal B, Mike Z, Nicolas L 2019 Cryogenics 2 105Google Scholar

    [17]

    Hagmann C, Benford D J, Richards P L 1994 Cryogenics 34 213Google Scholar

    [18]

    王昌, 王亚男, 刘远威, 戴巍, 沈俊 2019 真空与低温 25 317Google Scholar

    Wang C, Wang Y N, Liu Y W, Dai W, Shen J 2019 Vacuum & Cryogenics 25 317Google Scholar

    [19]

    Daudin B, Lagnier R, Salce B 1982 J. Magn. Magn. Mater. 27 315Google Scholar

    [20]

    Model 372 AC Bridge and Temperature Controller, Lakeshore http://www.lakeshore.com/products/product-detail/model-372/[2021-12-30]

  • 图 1  ADR的基本构成

    Fig. 1.  Basic components of ADR.

    图 2  ADR制冷循环

    Fig. 2.  Refrigeration cycle of ADR.

    图 3  制冷系统示意图

    Fig. 3.  Schematic diagram of refrigeration system.

    图 4  制冷系统实物图

    Fig. 4.  Photo of refrigeration system.

    图 5  ADR的实际循环

    Fig. 5.  Thermodynamic cycle of ADR.

    图 6  典型的ADR工作过程

    Fig. 6.  Typical running process of ADR.

    图 7  绝热去磁过程中温度-磁场对应关系

    Fig. 7.  T-B diagram during adiabatic demagnetization progress.

    表 1  常见亚开温区制冷技术对比

    Table 1.  Comparison of commonly used sub-Kelvin refrigeration technology.

    原理适用温区优点缺点
    DR氦3从其浓相进入稀相时吸收热量5 mK—1 K制冷温度低
    冷量大
    可连续制冷
    依赖重力
    依赖稀缺氦3
    SR工质饱和温度和饱和蒸气压的
    对应关系, 蒸发制冷
    300 mK—1 K结构简单
    可靠性高
    最低温下限较高
    热效率低
    依赖稀缺氦3
    ADR磁热材料的磁熵随外加磁场变化2 mK—1 K内禀高效
    不依赖重力
    工质易得
    单级制冷不连续
    可能有电磁干扰
    下载: 导出CSV

    表 2  ADR中常用的磁热工质

    Table 2.  Commonly used magnetocaloric materials (MCM) in ADR.

    名称化学式最低工作温度/K
    GGG[13]Gd3Ga5O120.38
    DGG[14]Dy3Ga5O120.6
    GLF[15]GdLiF40.48
    YbGG[16]Yb3Ga5O120.054
    MAS[5]Mn(SO4)2(NH4)2·6H2O0.17
    FAA[5]Fe(SO4)2(NH4)2·12H2O0.026
    CPA[5]CrK(SO4)2·12H2O0.009
    CCA[17]CrCs(SO4)2·12H2O0.01
    CMN[5]Ce2Mg3(NO3)12·24H2O0.0015
    下载: 导出CSV

    表 3  ADR中常用的热开关[18]

    Table 3.  Commonly used heat switches in ADR.

    适用温区开关比寄生热来源优缺点
    机械式不受限制机械能损耗可完全断开
    结构复杂、耐用性差
    超导式 ≤ 0.5 K > 100剩余导热
    涡流产热
    温区下限低
    需额外磁场
    气体式 ≥ 0.2 K≈1000剩余导热结构简单、可被动驱动
    较低温区失效
    磁阻式 ≤ 20 K > 1000剩余导热
    涡流产热
    适用温区广、开关比大
    需额外磁场
    下载: 导出CSV
    Baidu
  • [1]

    Collaudin B, Rando N 2000 Cryogenics 40 797Google Scholar

    [2]

    Coccia E 2000 Physica B 280 525Google Scholar

    [3]

    Osheroff D D, Richardson R C, Lee D M 1972 Phys. Rev. Lett. 29 88Google Scholar

    [4]

    Hornibrook J M, Colless J I, Lamb I D C, et al. 2014 Phys. Rev. Appl. 3 024010Google Scholar

    [5]

    Pobell F 2006 Matters and Methods at Low Temperature (New York: Acid-free Paper) pp203, 209, 206

    [6]

    De Haas W J, Wiersma E C, Kramers H A 1933 Physica 1 1Google Scholar

    [7]

    Giauque W F, MacDougall D P 1933 Phys. Rev. 43 768

    [8]

    Kurti N, Simon F 1934 Nature 133 907Google Scholar

    [9]

    Shirron P, Canavan E, Dipirro M, Jackson M, King T, Panek J, Tuttle J 2001 Cryogenics 41 789Google Scholar

    [10]

    Shirron P J 2014 Cryogenics 62 130Google Scholar

    [11]

    万绍宁, 容锡燊 1987 低温 2 133Google Scholar

    Wan S N, Rong X S 1987 Chin. J. Low Temp. 2 133Google Scholar

    [12]

    Wikus P, Canavan E, Heine S T, et al. 2014 Cryogenics. 62 150Google Scholar

    [13]

    Fisher R A, Brodale G E, Hornung E W, Giauque W F 1973 J. Chem. Phys. 59 4652Google Scholar

    [14]

    Goshorn D P, Onn D G, Remeika J P 1977 Phys. Rev. B 15 3527Google Scholar

    [15]

    Numazawa T, Kamiya K, Shirron P, DiPirro M, Matsumoto K 2006 AIP Conf. Proc. 850 1579Google Scholar

    [16]

    Diego A P B, Jean-Maec D, Christophe M, Emmanuelle B, Jean-Pascal B, Mike Z, Nicolas L 2019 Cryogenics 2 105Google Scholar

    [17]

    Hagmann C, Benford D J, Richards P L 1994 Cryogenics 34 213Google Scholar

    [18]

    王昌, 王亚男, 刘远威, 戴巍, 沈俊 2019 真空与低温 25 317Google Scholar

    Wang C, Wang Y N, Liu Y W, Dai W, Shen J 2019 Vacuum & Cryogenics 25 317Google Scholar

    [19]

    Daudin B, Lagnier R, Salce B 1982 J. Magn. Magn. Mater. 27 315Google Scholar

    [20]

    Model 372 AC Bridge and Temperature Controller, Lakeshore http://www.lakeshore.com/products/product-detail/model-372/[2021-12-30]

  • [1] 孙震, 吕项, 李盛, 安忠. 绝热表象下非绝热分子动力学方法.  , 2024, 73(14): 140201. doi: 10.7498/aps.73.20240401
    [2] 黄远志, 杨传浩, 何颂平, 马瑞松, 郇庆. 基于干式制冷的低温扫描探针显微镜研究进展.  , 2024, 73(22): 228701. doi: 10.7498/aps.73.20241367
    [3] 郑茂文, 郭浩文, 卫铃佼, 潘子杰, 邹佳润, 李瑞鑫, 赵密广, 陈厚磊, 梁惊涛. 稀释制冷技术.  , 2024, 73(23): 230701. doi: 10.7498/aps.73.20241211
    [4] 俎红叶, 程维军, 王亚男, 王晓涛, 李珂, 戴巍. 冷凝泵型稀释制冷机实验研究.  , 2023, 72(8): 080701. doi: 10.7498/aps.72.20222257
    [5] 李珂, 王亚男, 刘萍, 禹芳秋, 戴巍, 沈俊. 50 mK多级绝热去磁制冷机的实验研究.  , 2023, 72(19): 190702. doi: 10.7498/aps.72.20231102
    [6] 宋志军, 吕昭征, 董全, 冯军雅, 姬忠庆, 金勇, 吕力. 极低温散粒噪声测试系统及隧道结噪声测量.  , 2019, 68(7): 070702. doi: 10.7498/aps.68.20190114
    [7] 杨巨涛, 李清亮, 王建国, 郝书吉, 潘威炎. 双频双波束加热电离层激发甚低频/极低频辐射理论分析.  , 2017, 66(1): 019401. doi: 10.7498/aps.66.019401
    [8] 刘式达, 付遵涛, 刘式适. 从北极高压、南极低压到南北极间的三维异宿轨道.  , 2014, 63(21): 214701. doi: 10.7498/aps.63.214701
    [9] 郝书吉, 李清亮, 杨巨涛, 吴振森. 电离层调制加热产生极低频/甚低频波定向辐射的理论分析.  , 2013, 62(22): 229402. doi: 10.7498/aps.62.229402
    [10] 姚洪斌, 郑雨军. NaI分子的非绝热效应.  , 2011, 60(12): 128201. doi: 10.7498/aps.60.128201
    [11] 张 毅. Birkhoff系统的一类新型绝热不变量.  , 2006, 55(8): 3833-3837. doi: 10.7498/aps.55.3833
    [12] 闫 冰, 潘守甫, 王志刚, 于俊华. S3解离中的非绝热过程.  , 2006, 55(4): 1736-1739. doi: 10.7498/aps.55.1736
    [13] 沈建其, 庄 飞. 螺旋光纤系统中非绝热条件几何相移.  , 2005, 54(3): 1048-1052. doi: 10.7498/aps.54.1048
    [14] 孟继宝, 陈兆甲, 雒建林, 白海洋, 汪卫华, 郑萍, 张杰, 苏少奎, 王玉鹏. 重费密子系统CeCu6-xNix的极低温电阻研究.  , 2001, 50(8): 1632-1636. doi: 10.7498/aps.50.1632
    [15] 袁进胜, 孙昌璞. 旋转样品核四极共振的量子绝热微扰论分析.  , 1995, 44(1): 29-34. doi: 10.7498/aps.44.29
    [16] 陈学俊, 王岩, 曹小平. 反散射理论导出极低能量下的e-He相互作用势.  , 1994, 43(9): 1427-1432. doi: 10.7498/aps.43.1427
    [17] 蒋祺, 沈顺清, 陶瑞宝. 两个量子窄区串联时的绝热输运和欧姆输运.  , 1993, 42(7): 1157-1161. doi: 10.7498/aps.42.1157
    [18] 蒋祺;沈顺清;陶瑞宝. 两个量子窄区串联时的绝热输运和欧姆输运.  , 1991, 40(7): 1157-1161. doi: 10.7498/aps.40.1157
    [19] 高智, 卢文强. 非平衡、非绝热气体中的波.  , 1983, 32(6): 713-722. doi: 10.7498/aps.32.713
    [20] 周洁, 王占国, 刘志刚, 王万年, 尤兴凯. 硅的低温电学性质.  , 1966, 22(4): 404-411. doi: 10.7498/aps.22.404
计量
  • 文章访问数:  8540
  • PDF下载量:  236
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 修回日期:  2021-02-01
  • 上网日期:  2021-04-27
  • 刊出日期:  2021-05-05

/

返回文章
返回
Baidu
map