搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于一维弹道导体的三端纳米线制冷机的性能优化

徐帅 杨贇贇 刘行 何济洲

引用本文:
Citation:

基于一维弹道导体的三端纳米线制冷机的性能优化

徐帅, 杨贇贇, 刘行, 何济洲

Performance optimization of three-terminal nanowire refrigerator based on one-dimensional ballistic conductor

Xu Shuai, Yang Yun-Yun, Liu Xing, He Ji-Zhou
PDF
HTML
导出引用
  • 基于一维弹道导体, 建立了三端纳米线制冷机模型. 该模型是由一个中间空腔和左右电子库组成, 中间空腔和两电子库通过一维纳米线导体进行连接. 利用朗道方程和基本热力学公式推导出两电子库之间电荷流和能量流的表达式, 进而得出该制冷机模型的工作区间, 然后分析其性能特征并讨论制冷机性能优化. 研究表明: 不同的参数下该制冷机会有不同的制冷区间, 但每个制冷区间都存在一个温差上限, 超过该温差, 此装置将不能进行制冷. 制冷率随制冷系数变化的特征曲线为回原点扭叶型曲线, 这为衡量该制冷机性能提供了重要指标. 尽可能减小纳米线的能级宽度会提高该制冷机的工作性能.
    In this paper, the model of a three-terminal nanowire refrigerator is established based on one-dimensional (1D) ballistic conductor. It is composed of an intermediate cavity and left/right electron reservoir in which the intermediate cavity and left/right electron reservoir are connected by 1D nanowire conductor. The expression for the charge current and that for the energy current flowing from two electron reservoirs are derived by using Landauer formula and basic thermodynamic laws. Then, the working region of the refrigerator is obtained, its performance characteristics are analyzed, and its performance optimization is discussed. It is shown that the refrigerator under different parameters operates in different working regions. For each refrigeration region, there is an upper limit of temperature difference, and the refrigerator will be unable to refrigerate beyond the upper limit. The characteristic curve of the cooling rate changing with performance coefficient is a loop-shaped one, which provides an important index for us to evaluate the performance of the refrigerator. The energy level width of the nanowire can be reduced as much as possible, which will improve the performance of the refrigerator.
      通信作者: 何济洲, hjzhou@ncu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875034)资助的课题
      Corresponding author: He Ji-Zhou, hjzhou@ncu.edu.cn
    • Funds: Project supported by the National Natural Science Foundations of China (Grant No. 11875034)
    [1]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [2]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [3]

    Venkatasubramanian R, Siivola E, Colpittes T, O’Quinn B 2001 Nature 413 597Google Scholar

    [4]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229Google Scholar

    [5]

    Boukai A I, Bunimovich J, Tahir-Kheli J, Yu J K, Goddard Iii W A, Heath J R 2008 Nature 451 168Google Scholar

    [6]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458Google Scholar

    [7]

    Staring A A M, Molenkamp L W, Alphenaar B W, Van Houten H, Buyk O J A, Mabesoone M A A, Beenakker C W J, Foxon C T 1993 Europhys. Lett. 22 57Google Scholar

    [8]

    Molenkamp L, Staring A A M, Alphenaar B W, Van Houten H, Beenakker C W J 1994 Semicond. Sci. Technol. 9 903Google Scholar

    [9]

    Dzurak A S, Smith C G, Barnes C H W, Pepper M, Martín-Moreno L, Liang C T, Ritchie D A, Jones G A C 1997 Phys. Rev. B 55 R10197Google Scholar

    [10]

    Esposito M, Lindenberg K, Van den Broeck C 2009 Europhys. Lett. 85 60010Google Scholar

    [11]

    Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. E 81 041106Google Scholar

    [12]

    Esposito M, Kumar N, Lindenberg K, Van den Broeck C 2012 Phys. Rev. E 85 031117Google Scholar

    [13]

    Su S H, Zhang Y C, Peng W L, Su G Z, Chen J C 2021 Sci. Sin. Phys. 51 030011

    [14]

    Su G Z, Zhang Y C, Cai L, Su S H, Chen J C 2015 Energy 90 1842Google Scholar

    [15]

    Su G Z, Liao T J, Chen L W, Chen J C 2016 Energy 101 421Google Scholar

    [16]

    Su G Z, Pan Y Z, Zhang Y C, Shih T M, Chen J C 2016 Energy 113 723Google Scholar

    [17]

    Peng W L, Liao T J, Zhang Y C, Su G Z, Lin G X, Chen J C 2017 Energy Convers. Manage. 143 391Google Scholar

    [18]

    Peng W L, Zhang Y C, Yang Z M, Chen J C 2018 Eur. Phys. J. Plus. 133 38Google Scholar

    [19]

    Peng W L, Ye Z L, Zhang X, Chen J C 2018 Energy Convers. Manage. 166 74Google Scholar

    [20]

    Edwards H L, Niu Q, De Lozanne A L 1993 Appl. Phys. Lett. 63 1815Google Scholar

    [21]

    Edwards H L, Niu Q, Georgakis G A, De Lozanne A L 1995 Phys. Rev. B 52 5714

    [22]

    Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, Ritchie D A 2009 Phys. Rev. Lett. 102 146602Google Scholar

    [23]

    Jiang J H, Entin-Wohlman O, Imry Y 2012 Phys. Rev. B 85 075412Google Scholar

    [24]

    Jiang J H 2014 J. Appl. Phys. 116 194303Google Scholar

    [25]

    Jiang J H, Imry Y 2018 Phys. Rev. B 97 125422Google Scholar

    [26]

    Jordan A N, Sothmann B, Sánchez R, Büttiker M 2013 Phys. Rev. B 87 075312Google Scholar

    [27]

    Qiu S S, Ding Z M, Chen L G, Meng F K, Sun F R 2019 The Euro. Phys. J. Plus. 134 273Google Scholar

    [28]

    Ding Z M, Chen L G, Ge Y L, Xie Z H 2019 Sci. China: Tech. Sci. 62 397Google Scholar

    [29]

    Li W, Yang Y Y, Fu J, He J Z 2020 ES. Energy Environment 7 40

    [30]

    Lin Z B, Li W, Fu J, Yang Y Y, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [31]

    Lin Z B, Li W, Yang Y Y, He J Z 2020 Phys. Rev. B 101 022117

    [32]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [33]

    Fu J, Li W, Shi Z C, He J Z 2018 Chin. J. Phys. 56 895Google Scholar

    [34]

    Shi Z C, He J Z, Xiao Y L 2015 Sci. Sin. Phys. 45 050502

    [35]

    Shi Z C, Qin W F, He J Z 2016 Mod. Phys. Lett. B 30 1650397Google Scholar

    [36]

    Yang Y Y, Xu S, Li W, He J Z 2020 Phys. Scr. 95 095001Google Scholar

    [37]

    Yang Y Y, Xu S, He J Z 2020 Chin. Phys. Lett. 37 120502Google Scholar

    [38]

    Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nature Nanotechnology 10 854Google Scholar

    [39]

    Roche B, Roulleau P, Julien T, Jompol Y, Farrer I, Ritchie D A, Glattli D C 2015 Nature Commun. 6 6738Google Scholar

    [40]

    Hartmann F, Pfeffer P, Hofling S, Kamp M, Worschech L 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [41]

    Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A, Smith C G 2019 Phys. Rev. Lett. 123 117701Google Scholar

    [42]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar, Yang P 2008 Nature 451 163Google Scholar

    [43]

    Björk M T, Ohlsson B J, Sass T, Thelander C, Persson A I, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2020 Appl. Phys. Lett. 80 1058

    [44]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [45]

    Nakpathomkun N, Xu H Q, Linke H 2010 Phys. Rev. B 82 235428Google Scholar

  • 图 1  (a) 三端纳米线制冷机模型图; (b) 传输函数${\tau _i}\left( E \right)$作为能量${E_i}$的函数

    Fig. 1.  (a) The schematic diagram of a three-terminal nanowire refrigerator; (b) transmission function ${\tau _i}\left( E \right)$ as a function of energy level ${E_i}$.

    图 2  (a) 在$\gamma \to 0$的情况下制冷机的工作区间; (b) 当γ取不同的值时对工作区间的影响

    Fig. 2.  (a) The working region of the refrigerator in the case of $\gamma \to 0$; (b) the working regions at given different value γ

    图 3  $\gamma \to 0$时(a)制冷率和(b)制冷系数随着能级位置变化的三维图; (c)—(f)分别是$\gamma = 0.5$$\gamma = 1$对应的制冷率和制冷系数的三维图

    Fig. 3.  Three-dimensional graphs for (a) the cooling rate and (b) the coefficient of performance varying with the energy level positions under $\gamma \to 0$; (c)–(f) are the three-dimensional graphs for the cooling rate and the coefficient of performance at given $\gamma = 0.5$ and $\gamma = 1$, respectively.

    图 4  (a) 制冷率关于电压的函数图像; (b) 制冷系数关于电压的函数图像; (c) 制冷机的${\dot{{Q}}_{\text{C}}}{-}\varphi$特征图

    Fig. 4.  (a) The cooling rate as a function of voltage; (b) the coefficient of performance as a function of voltage; (c) the characteristic curves of ${\dot{{Q}}_{\text{C}}}{-}\varphi$ at given different value γ.

    图 5  (a) 优化的制冷率随电压变化的图像; (b) 相应制冷系数随电压变化的图像; (c) 最优能级位置随电压变化的图像

    Fig. 5.  (a) The curves of the optimized cooling rate as a function of voltage; (b) the curves of the corresponding coefficient of performance as a function of voltage; (c) the curves of the optimal energy level position as a function of voltage.

    图 6  (a) 优化的制冷率随能级宽度变化的图像; (b) 相应的制冷系数随能级宽度变化的图像; (c) 最优能级位置随能级宽度变化的图像

    Fig. 6.  (a) The curves of the optimized cooling rate as a function of the width of energy level; (b) the curves of the corresponding coefficient of performance as a function of the width of energy level; (c) the curves of the optimal position of energy level as a function of the width of energy level.

    图 7  (a) 最大制冷率随温差变化的图像; (b) 最大制冷率下的制冷系数和以卡诺制冷系数为单位的制冷系数随温差变化的图像

    Fig. 7.  (a) The curves of the maximum cooling rate as a function of the temperature difference; (b) the curves of the coefficient of performance at the maximum cooling rate and the coefficient of performance in a unit of Carnot value as a function of the temperature difference.

    Baidu
  • [1]

    Hicks L D, Dresselhaus M S 1993 Phys. Rev. B 47 12727Google Scholar

    [2]

    Hicks L D, Harman T C, Dresselhaus M S 1993 Appl. Phys. Lett. 63 3230Google Scholar

    [3]

    Venkatasubramanian R, Siivola E, Colpittes T, O’Quinn B 2001 Nature 413 597Google Scholar

    [4]

    Harman T C, Taylor P J, Walsh M P, LaForge B E 2002 Science 297 2229Google Scholar

    [5]

    Boukai A I, Bunimovich J, Tahir-Kheli J, Yu J K, Goddard Iii W A, Heath J R 2008 Nature 451 168Google Scholar

    [6]

    Björk M T, Ohlsson B J, Thelander C, Persson A I, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 81 4458Google Scholar

    [7]

    Staring A A M, Molenkamp L W, Alphenaar B W, Van Houten H, Buyk O J A, Mabesoone M A A, Beenakker C W J, Foxon C T 1993 Europhys. Lett. 22 57Google Scholar

    [8]

    Molenkamp L, Staring A A M, Alphenaar B W, Van Houten H, Beenakker C W J 1994 Semicond. Sci. Technol. 9 903Google Scholar

    [9]

    Dzurak A S, Smith C G, Barnes C H W, Pepper M, Martín-Moreno L, Liang C T, Ritchie D A, Jones G A C 1997 Phys. Rev. B 55 R10197Google Scholar

    [10]

    Esposito M, Lindenberg K, Van den Broeck C 2009 Europhys. Lett. 85 60010Google Scholar

    [11]

    Esposito M, Kawai R, Lindenberg K, Van den Broeck C 2010 Phys. Rev. E 81 041106Google Scholar

    [12]

    Esposito M, Kumar N, Lindenberg K, Van den Broeck C 2012 Phys. Rev. E 85 031117Google Scholar

    [13]

    Su S H, Zhang Y C, Peng W L, Su G Z, Chen J C 2021 Sci. Sin. Phys. 51 030011

    [14]

    Su G Z, Zhang Y C, Cai L, Su S H, Chen J C 2015 Energy 90 1842Google Scholar

    [15]

    Su G Z, Liao T J, Chen L W, Chen J C 2016 Energy 101 421Google Scholar

    [16]

    Su G Z, Pan Y Z, Zhang Y C, Shih T M, Chen J C 2016 Energy 113 723Google Scholar

    [17]

    Peng W L, Liao T J, Zhang Y C, Su G Z, Lin G X, Chen J C 2017 Energy Convers. Manage. 143 391Google Scholar

    [18]

    Peng W L, Zhang Y C, Yang Z M, Chen J C 2018 Eur. Phys. J. Plus. 133 38Google Scholar

    [19]

    Peng W L, Ye Z L, Zhang X, Chen J C 2018 Energy Convers. Manage. 166 74Google Scholar

    [20]

    Edwards H L, Niu Q, De Lozanne A L 1993 Appl. Phys. Lett. 63 1815Google Scholar

    [21]

    Edwards H L, Niu Q, Georgakis G A, De Lozanne A L 1995 Phys. Rev. B 52 5714

    [22]

    Prance J R, Smith C G, Griffiths J P, Chorley S J, Anderson D, Jones G A C, Farrer I, Ritchie D A 2009 Phys. Rev. Lett. 102 146602Google Scholar

    [23]

    Jiang J H, Entin-Wohlman O, Imry Y 2012 Phys. Rev. B 85 075412Google Scholar

    [24]

    Jiang J H 2014 J. Appl. Phys. 116 194303Google Scholar

    [25]

    Jiang J H, Imry Y 2018 Phys. Rev. B 97 125422Google Scholar

    [26]

    Jordan A N, Sothmann B, Sánchez R, Büttiker M 2013 Phys. Rev. B 87 075312Google Scholar

    [27]

    Qiu S S, Ding Z M, Chen L G, Meng F K, Sun F R 2019 The Euro. Phys. J. Plus. 134 273Google Scholar

    [28]

    Ding Z M, Chen L G, Ge Y L, Xie Z H 2019 Sci. China: Tech. Sci. 62 397Google Scholar

    [29]

    Li W, Yang Y Y, Fu J, He J Z 2020 ES. Energy Environment 7 40

    [30]

    Lin Z B, Li W, Fu J, Yang Y Y, He J Z 2019 Chin. Phys. Lett. 36 060501Google Scholar

    [31]

    Lin Z B, Li W, Yang Y Y, He J Z 2020 Phys. Rev. B 101 022117

    [32]

    Su H, Shi Z C, He J Z 2015 Chin. Phys. Lett. 32 100501Google Scholar

    [33]

    Fu J, Li W, Shi Z C, He J Z 2018 Chin. J. Phys. 56 895Google Scholar

    [34]

    Shi Z C, He J Z, Xiao Y L 2015 Sci. Sin. Phys. 45 050502

    [35]

    Shi Z C, Qin W F, He J Z 2016 Mod. Phys. Lett. B 30 1650397Google Scholar

    [36]

    Yang Y Y, Xu S, Li W, He J Z 2020 Phys. Scr. 95 095001Google Scholar

    [37]

    Yang Y Y, Xu S, He J Z 2020 Chin. Phys. Lett. 37 120502Google Scholar

    [38]

    Thierschmann H, Sánchez R, Sothmann B, Arnold F, Heyn C, Hansen W, Buhmann H, Molenkamp L W 2015 Nature Nanotechnology 10 854Google Scholar

    [39]

    Roche B, Roulleau P, Julien T, Jompol Y, Farrer I, Ritchie D A, Glattli D C 2015 Nature Commun. 6 6738Google Scholar

    [40]

    Hartmann F, Pfeffer P, Hofling S, Kamp M, Worschech L 2015 Phys. Rev. Lett. 114 146805Google Scholar

    [41]

    Jaliel G, Puddy R K, Sánchez R, Jordan A N, Sothmann B, Farrer I, Griffiths J P, Ritchie D A, Smith C G 2019 Phys. Rev. Lett. 123 117701Google Scholar

    [42]

    Hochbaum A I, Chen R, Delgado R D, Liang W, Garnett E C, Najarian M, Majumdar, Yang P 2008 Nature 451 163Google Scholar

    [43]

    Björk M T, Ohlsson B J, Sass T, Thelander C, Persson A I, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2020 Appl. Phys. Lett. 80 1058

    [44]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)

    [45]

    Nakpathomkun N, Xu H Q, Linke H 2010 Phys. Rev. B 82 235428Google Scholar

  • [1] 尚帅朋, 陆勇俊, 王峰会. 表面效应对纳米线电极屈曲失稳的影响.  , 2022, 71(3): 033101. doi: 10.7498/aps.71.20211864
    [2] 刘行, 徐帅, 高金柱, 何济洲. 基于三个耦合量子点的四端混合驱动制冷机.  , 2022, 71(19): 190502. doi: 10.7498/aps.71.20220904
    [3] 何济洲, 徐帅. 基于一维弹道导体的三端纳米线制冷机的性能优化.  , 2021, (): . doi: 10.7498/aps.70.20211077
    [4] 卫壮志, 薛文瑞, 彭艳玲, 程鑫, 李昌勇. 基于涂覆石墨烯的三根电介质纳米线的THz波导的模式特性分析.  , 2018, 67(10): 108101. doi: 10.7498/aps.67.20180036
    [5] 张荣, 卢灿灿, 李倩文, 刘伟, 白龙. 线性不可逆热力学框架下一个无限尺寸热源而有限尺寸冷源的制冷机的性能分析.  , 2018, 67(4): 040502. doi: 10.7498/aps.67.20172010
    [6] 高凤菊. 弯曲Cu纳米线相干X射线衍射图的计算.  , 2015, 64(13): 138102. doi: 10.7498/aps.64.138102
    [7] 李静, 冯妍卉, 张欣欣, 黄丛亮, 杨穆. 考虑界面散射的金属纳米线热导率修正.  , 2013, 62(18): 186501. doi: 10.7498/aps.62.186501
    [8] 周渝, 张蜡宝, 郏涛, 赵清源, 顾敏, 邱健, 康琳, 陈健, 吴培亨. 超导纳米线多光子响应特性研究.  , 2012, 61(20): 208501. doi: 10.7498/aps.61.208501
    [9] 周国荣, 滕新营, 王艳, 耿浩然, 许甫宁. 尺寸效应对Al纳米线凝固行为的影响.  , 2012, 61(6): 066101. doi: 10.7498/aps.61.066101
    [10] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器.  , 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [11] 张富春, 张威虎, 董军堂, 张志勇. Cr掺杂ZnO纳米线的电子结构和磁性.  , 2011, 60(12): 127503. doi: 10.7498/aps.60.127503
    [12] 贺兵香, 何济洲. 双势垒InAs/InP纳米线异质结热电子制冷机.  , 2010, 59(6): 3846-3850. doi: 10.7498/aps.59.3846
    [13] 孟利军, 肖化平, 唐超, 张凯旺, 钟建新. 碳纳米管-硅纳米线复合结构的形成和热稳定性.  , 2009, 58(11): 7781-7786. doi: 10.7498/aps.58.7781
    [14] 徐振海, 袁林, 单德彬, 郭斌. 单晶铜纳米线屈服机理的原子模拟研究.  , 2009, 58(7): 4835-4839. doi: 10.7498/aps.58.4835
    [15] 张凯旺, 孟利军, 李 俊, 刘文亮, 唐 翌, 钟建新. 碳纳米管内金纳米线的结构与热稳定性.  , 2008, 57(7): 4347-4355. doi: 10.7498/aps.57.4347
    [16] 杨 炯, 张文清. Se,Te纳米线系统的结构稳定性研究.  , 2007, 56(7): 4017-4023. doi: 10.7498/aps.56.4017
    [17] 雷 达, 曾乐勇, 夏玉学, 陈 松, 梁静秋, 王维彪. 带栅极纳米线冷阴极的场增强因子研究.  , 2007, 56(11): 6616-6622. doi: 10.7498/aps.56.6616
    [18] 袁淑娟, 周仕明, 鹿 牧. Ni纳米线阵列的铁磁共振研究.  , 2006, 55(2): 891-896. doi: 10.7498/aps.55.891
    [19] 孟凡斌, 胡海宁, 李养贤, 陈贵锋, 陈京兰, 吴光恒. 一维Co单晶纳米线的x射线研究.  , 2005, 54(1): 384-388. doi: 10.7498/aps.54.384
    [20] 肖君军, 孙超, 薛德胜, 李发伸. 铁纳米线磁行为的微磁学模拟与研究.  , 2001, 50(8): 1605-1609. doi: 10.7498/aps.50.1605
计量
  • 文章访问数:  3585
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-07
  • 修回日期:  2021-09-18
  • 上网日期:  2022-01-09
  • 刊出日期:  2022-01-20

/

返回文章
返回
Baidu
map