Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Antenna radiation characteristics of wake region in ablative plasma flow

WANG Yuxuan GUO LinJing LI Jiangting GUO Lixin ZANG Junwei DUAN Baili

Citation:

Antenna radiation characteristics of wake region in ablative plasma flow

WANG Yuxuan, GUO LinJing, LI Jiangting, GUO Lixin, ZANG Junwei, DUAN Baili
cstr: 32037.14.aps.74.20250154
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • When the wall temperature of the thermal protection or insulation materials on the surface of an aircraft exceeds their tolerance limits under the heating of supersonic aerodynamic heat energy, degradation damage phenomena such as high-temperature thermochemical ablation and mechanical erosion will occur in the surface area. The ablation diffusion products (ablation particles) generated are ejected into the surrounding plasma flow field and suspended around the aircraft, forming a hypersonic plasma flow field with ablation diffusion substances. The presence of ablation diffusion substances can significantly affect the physical and electromagnetic characteristics of the original plasma flow field. To solve this problem, this study establishes a coupled electromagnetic model of an ablative plasma flow field surrounding a blunt-nosed cone aircraft and analyzes the antenna radiation characteristics in the wake region of the ablative flow field. The research method consists of several key steps. Firstly, the plasma flow field around the blunt-nosed cone is simulated using ANSYS FLUENT, a computational fluid dynamics (CFD) software. This step provides the fundamental flow field parameters such as electron density, temperature, and pressure distributions. Secondly, ablation particles, generated from thermal protection material degradation, are uniformly dispersed into the plasma flow. Then, the ablative plasma flow field is obtained. Thirdly, an X-band horn antenna is designed in ANSYS HFSS and loaded into the center of the wake region of the ablative plasma flow field. Based on the above models, the ray-tracing method is employed to quantitatively evaluate the attenuation of antenna radiation as it propagates through the wake region. The numerical results demonstrate that the plasma flow field enveloping the aircraft induces significant attenuation of antenna radiation energy. It is more noteworthy that the presence of ablation particles within the flow field substantially amplifies this energy dissipation effect. Both the ablation particle density and size distribution are identified as dominant factors controlling radiative energy loss, exhibiting proportional relationships with the attenuation of the incident field. This study systematically proves the influences of ablation particle density and size on initial field energy attenuation. This research can provide a reference for solving the problem of electromagnetic wave propagation that causes the information transmission bottleneck of near-space hypersonic aircraft. It can also serves as a theoretical basis for further in-depth research on technologies such as target detection, identification, thermal protection/insulation materials, and system design of hypersonic aircraft.
      Corresponding author: GUO LinJing, ljguo@xidian.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62001344).
    [1]

    Korotkevich A O, Newell A C, Zakharov V E 2007 J. Appl. Phys. 102 083305Google Scholar

    [2]

    Li J F, Wang Y, Zhou Z X, Yao J F, Liu J L, Lan Z H, Yuan C X 2023 Nanophotonics 12 1847Google Scholar

    [3]

    Chen S G, Hou L, Shi W, et al. 2023 IEEE Trans. THz Sci. Technol. 13 28Google Scholar

    [4]

    Yang W O, Liu Q, Mao W, Gao S, Wu Z 2023 IEEE Trans. Antennas Propag. 71 2710Google Scholar

    [5]

    Zhang Y, Xu G, Zheng Z 2021 Waves Random Complex Media 31 2466Google Scholar

    [6]

    Bogatskaya A V, Klenov N V, Tereshonok M V, Adjemov, S S, Popov, A M 2018 J. Phys. D: Appl. Phys. 51 185602Google Scholar

    [7]

    李小平, 刘彦明, 谢楷 2018 高速飞行器等离子体鞘套电磁波传播理论与通信技术(北京: 科学出版社) 第35页

    Li X P, Liu Y M, Xie K 2018 Theory and Communication Technology of Electromagnetic Wave Propagation in Plasma Sheath of High Speed Aircraft (Beijing: Science Press) p35

    [8]

    Sha Y X, Zhang H L, Guo X Y, Xia M Y 2019 IEEE Trans. Antennas Propag. 67 2470Google Scholar

    [9]

    Li J, He M, Li X P, Zhang C F 2018 IEEE Trans. Antennas Propag. 66 3653Google Scholar

    [10]

    Zhao Z Y, Yuan K, Tang R X, Lin H, Deng X H 2022 IEEE Trans. Plasma Sci. 50 517Google Scholar

    [11]

    Ni Y X, Zhao Z Y, Yuan K, Tang Y X, Hong L J 2023 IEEE Trans. Plasma Sci. 51 2736Google Scholar

    [12]

    Mei J, Xie Y J 2017 IEEE Trans. Plasma Sci. 45 364Google Scholar

    [13]

    Xu J, Bai B W, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wireless Propag. Lett. 16 1056Google Scholar

    [14]

    Chen X Y, Li K X, Liu Y Y, Zhou Y G, Li X P, Liu Y M 2017 IEEE Trans. Plasma Sci. 45 3166Google Scholar

    [15]

    郑永康, 叶友达, 田浩, 田浩, 蒋勤学 2024 空天技术 458 54

    Zheng Y K, Ye Y D, Tian H, Tian H, Jiang Q X 2024 Aerosp. Technol. 458 54

    [16]

    Mao M Y, Peng K P, Zhao Z Y, Yuan K, Xiong J W, Tang R X, Deng X H 2024 IEEE Trans. Plasma Sci. 52 240Google Scholar

    [17]

    Deng Q Q, Chen W, Yang L X, Chen C X, Bo Y, Guo L X 2024 IEEE Trans. Plasma Sci. 52 1452Google Scholar

    [18]

    Guo Y J, Shi W B, Zeng L, Du B H 2019 Mechanism of Ablative Thermal Protection Applied To Hypersonic Vehicles p25 ((in Chinese)[国义军, 石卫波, 曾磊, 杜百合 2019 高超声速飞行器烧蚀防热理论与应用(北京: 科学出版社) 第25页]

    [19]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27–30, 2011, AIAA 2011-897

    [20]

    曾学军, 李海燕 2017 宇航学报 38 109

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109

    [21]

    李开 2017 博士学位论文 (长沙: 国防科学技术大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [22]

    李开, 刘伟强 2016 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [23]

    姚霄, 刘伟强, 谭建国 2018 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [24]

    Robin A M, Adam S P, Partho P 2019 J. Thermophys. Heat TR 33 1018Google Scholar

    [25]

    丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰 2024 73 115204Google Scholar

    Ding M S, Liu Q Z, Jiang T, Fu Y A X, Li P, Mei J 2024 Acta Phys. Sin. 73 115204Google Scholar

    [26]

    Shao C, Nie L, Chen W F 2016 Aerosp. Sci. Technol. 51 151Google Scholar

    [27]

    赵文文 2014 博士学位论文(杭州: 浙江大学)

    Zhao W W 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [28]

    Chang P C Y, Walker J G, Hopcraft K I 2005 J. Quant. Spectrosc. Radiat. Transfer 96 327Google Scholar

    [29]

    Li L Q, Wei B, Yang Q, Yang X, Ge D B 2017 IEEE Trans. Antennas wireless propag. Letter. 16 2078Google Scholar

    [30]

    Wang M Y, Li H L, Dong Y L, Li G P, Jiang B J, Zhao Q, Xu J 2016 IEEE Trans. Antennas Propag. 64 286Google Scholar

  • 图 1  计算流程

    Figure 1.  Calculation process.

    图 2  RAM-C飞行器模型

    Figure 2.  Aircraft model of RAM-C.

    图 3  RAM-C的等离子体流场(Ma = 25, 30 km, 0°) (a)电子密度; (b)温度; (c)压强

    Figure 3.  Plasma flow fields of RAM-C (Ma = 25, 30 km and 0°): (a) Electron density; (b) temperature; (c) pressure.

    图 4  RAM-C的等离子体流场(Ma = 20, 40 km, 0°) (a)电子密度; (b)温度; (c)压强

    Figure 4.  Plasma flow fields of RAM-C (Ma = 20, 40 km, 0°): (a) Electron density; (b) temperature; (c) pressure.

    图 5  喇叭天线结构示意图

    Figure 5.  Horn antenna structure diagram.

    图 6  喇叭天线方向示意图

    Figure 6.  Direction diagram of horn antenna.

    图 7  喇叭天线S11参数

    Figure 7.  S11 parameter of horn antenna.

    图 8  入射-透射射线基坐标系

    Figure 8.  Incidence-transmission coordinate system.

    图 9  不同烧蚀颗粒密度下的天线方向图(Ma = 25, 30 km, 0°) (a) xoz面; (b) yoz

    Figure 9.  Antenna patterns of ablation particles with different densities (Ma =25, 30 km, 0°): (a) xoz plane; (b) yoz plane.

    图 10  不同烧蚀颗粒密度下的天线方向图(Ma = 20, 40 km, 0°) (a) xoz面; (b) yoz

    Figure 10.  Antenna patterns of ablation particles with different densities (Ma = 20, 40 km, 0°): (a) xoz plane; (b) yoz plane.

    图 11  不同烧蚀颗粒半径下的天线方向图(Ma = 25, 30 km, 0°) (a) xoz面; (b) yoz

    Figure 11.  Antenna patterns of ablation particles with different radii (Ma = 25, 30 km, 0°): (a) xoz plane; (b) yoz plane.

    图 12  不同半径烧蚀颗粒半径下的天线方向图(Ma = 20, 40 km, 0°) (a) xoz面; (b) yoz

    Figure 12.  Antenna patterns of ablation particles with different radii (Ma = 20, 40 km, 0°): (a) xoz plane; (b) yoz plane.

    表 1  X波段喇叭天线结构参数

    Table 1.  Structural parameters of X-band horn antenna.

    波导
    宽度
    W/mm
    波导
    高度
    H/mm
    波导
    长度
    /mm
    喇叭口
    径宽度
    W1/mm
    喇叭口
    径高度
    H1/mm
    喇叭
    长度
    /mm
    23 10 32 238 176 465
    DownLoad: CSV
    Baidu
  • [1]

    Korotkevich A O, Newell A C, Zakharov V E 2007 J. Appl. Phys. 102 083305Google Scholar

    [2]

    Li J F, Wang Y, Zhou Z X, Yao J F, Liu J L, Lan Z H, Yuan C X 2023 Nanophotonics 12 1847Google Scholar

    [3]

    Chen S G, Hou L, Shi W, et al. 2023 IEEE Trans. THz Sci. Technol. 13 28Google Scholar

    [4]

    Yang W O, Liu Q, Mao W, Gao S, Wu Z 2023 IEEE Trans. Antennas Propag. 71 2710Google Scholar

    [5]

    Zhang Y, Xu G, Zheng Z 2021 Waves Random Complex Media 31 2466Google Scholar

    [6]

    Bogatskaya A V, Klenov N V, Tereshonok M V, Adjemov, S S, Popov, A M 2018 J. Phys. D: Appl. Phys. 51 185602Google Scholar

    [7]

    李小平, 刘彦明, 谢楷 2018 高速飞行器等离子体鞘套电磁波传播理论与通信技术(北京: 科学出版社) 第35页

    Li X P, Liu Y M, Xie K 2018 Theory and Communication Technology of Electromagnetic Wave Propagation in Plasma Sheath of High Speed Aircraft (Beijing: Science Press) p35

    [8]

    Sha Y X, Zhang H L, Guo X Y, Xia M Y 2019 IEEE Trans. Antennas Propag. 67 2470Google Scholar

    [9]

    Li J, He M, Li X P, Zhang C F 2018 IEEE Trans. Antennas Propag. 66 3653Google Scholar

    [10]

    Zhao Z Y, Yuan K, Tang R X, Lin H, Deng X H 2022 IEEE Trans. Plasma Sci. 50 517Google Scholar

    [11]

    Ni Y X, Zhao Z Y, Yuan K, Tang Y X, Hong L J 2023 IEEE Trans. Plasma Sci. 51 2736Google Scholar

    [12]

    Mei J, Xie Y J 2017 IEEE Trans. Plasma Sci. 45 364Google Scholar

    [13]

    Xu J, Bai B W, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wireless Propag. Lett. 16 1056Google Scholar

    [14]

    Chen X Y, Li K X, Liu Y Y, Zhou Y G, Li X P, Liu Y M 2017 IEEE Trans. Plasma Sci. 45 3166Google Scholar

    [15]

    郑永康, 叶友达, 田浩, 田浩, 蒋勤学 2024 空天技术 458 54

    Zheng Y K, Ye Y D, Tian H, Tian H, Jiang Q X 2024 Aerosp. Technol. 458 54

    [16]

    Mao M Y, Peng K P, Zhao Z Y, Yuan K, Xiong J W, Tang R X, Deng X H 2024 IEEE Trans. Plasma Sci. 52 240Google Scholar

    [17]

    Deng Q Q, Chen W, Yang L X, Chen C X, Bo Y, Guo L X 2024 IEEE Trans. Plasma Sci. 52 1452Google Scholar

    [18]

    Guo Y J, Shi W B, Zeng L, Du B H 2019 Mechanism of Ablative Thermal Protection Applied To Hypersonic Vehicles p25 ((in Chinese)[国义军, 石卫波, 曾磊, 杜百合 2019 高超声速飞行器烧蚀防热理论与应用(北京: 科学出版社) 第25页]

    [19]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27–30, 2011, AIAA 2011-897

    [20]

    曾学军, 李海燕 2017 宇航学报 38 109

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109

    [21]

    李开 2017 博士学位论文 (长沙: 国防科学技术大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [22]

    李开, 刘伟强 2016 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [23]

    姚霄, 刘伟强, 谭建国 2018 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [24]

    Robin A M, Adam S P, Partho P 2019 J. Thermophys. Heat TR 33 1018Google Scholar

    [25]

    丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰 2024 73 115204Google Scholar

    Ding M S, Liu Q Z, Jiang T, Fu Y A X, Li P, Mei J 2024 Acta Phys. Sin. 73 115204Google Scholar

    [26]

    Shao C, Nie L, Chen W F 2016 Aerosp. Sci. Technol. 51 151Google Scholar

    [27]

    赵文文 2014 博士学位论文(杭州: 浙江大学)

    Zhao W W 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University

    [28]

    Chang P C Y, Walker J G, Hopcraft K I 2005 J. Quant. Spectrosc. Radiat. Transfer 96 327Google Scholar

    [29]

    Li L Q, Wei B, Yang Q, Yang X, Ge D B 2017 IEEE Trans. Antennas wireless propag. Letter. 16 2078Google Scholar

    [30]

    Wang M Y, Li H L, Dong Y L, Li G P, Jiang B J, Zhao Q, Xu J 2016 IEEE Trans. Antennas Propag. 64 286Google Scholar

  • [1] Zhang Zhen, Yi Shi-He, Liu Xiao-Lin, Chen Shi-Kang, Zhang Zhen. Flow evolution of mixed layer on convex curvature wall under hypersonic conditions. Acta Physica Sinica, 2024, 73(10): 104701. doi: 10.7498/aps.73.20240128
    [2] Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie. Influence of surface ablation on plasma and its interaction with electromagnetic field. Acta Physica Sinica, 2024, 73(11): 115204. doi: 10.7498/aps.73.20231733
    [3] He Xin, Jiang Tao, Zhang Zhen-Fu, Yang Jun-Bo. Bound-state characteristic temperature method and its applications. Acta Physica Sinica, 2022, 71(8): 085201. doi: 10.7498/aps.71.20212115
    [4] Liu Yong, Tu Guo-Hua, Xiang Xing-Hao, Li Xiao-Hu, Guo Qi-Long, Wan Bing-Bing. Parametrization of suppressing hypersonic second-mode waves by transverse rectangular microgrooves. Acta Physica Sinica, 2022, 71(19): 194701. doi: 10.7498/aps.71.20220851
    [5] Ma Ping, Han Yi-Ping, Zhang Ning, Tian De-Yang, Shi An-Hua, Song Qiang. Experimental investigation on all-target electromagnetic scattering characteristics of hypervelocity HTV2-like flight model. Acta Physica Sinica, 2022, 71(8): 084101. doi: 10.7498/aps.71.20211901
    [6] Wang Kai, Sun Jing-Ya, Pan Chang-Ji, Wang Fei-Fei, Zhang Ke, Chen Zhi-Cheng. Ultrafast dynamic response and temporal shaping modulation of tungsten disulfide irradiated by femtosecond laser. Acta Physica Sinica, 2021, 70(20): 205201. doi: 10.7498/aps.70.20210737
    [7] Zheng Wen-Peng, Yi Shi-He, Niu Hai-Bo, Huo Jun-Jie. Experimental research on crossflow instability for a hypersonic 4∶1 elliptic cone. Acta Physica Sinica, 2021, 70(24): 244702. doi: 10.7498/aps.70.20210807
    [8] Hu Li-Jun, Yuan Hai-Zhuan, Du Yu-Long. A modified HLLEM scheme and shock stability analysis. Acta Physica Sinica, 2020, 69(13): 134701. doi: 10.7498/aps.69.20191851
    [9] Zhang Shi-Jian, Yu Xiao, Zhong Hao-Wen, Liang Guo-Ying, Xu Mo-Fei, Zhang Nan, Ren Jian-Hui, Kuang Shi-Cheng, Yan Sha, Gennady Efimovich Remnev, Le Xiao-Yun. Influence of ablation on energy deposition in polymer material under irradiation of intense pulsed ion beam. Acta Physica Sinica, 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [10] He Lin, Yi Shi-He, Lu Xiao-Ge. Experimental study on the density characteristics of a supersonic turbulent boundary layer. Acta Physica Sinica, 2017, 66(2): 024701. doi: 10.7498/aps.66.024701
    [11] Zhang Jie, Zhong Hao-Wen, Shen Jie, Liang Guo-Ying, Cui Xiao-Jun, Zhang Xiao-Fu, Zhang Gao-Long, Yan Sha, Yu Xiao, Le Xiao-Yun. Characteristics of metal ablation product by intense pulsed ion beam irradiation. Acta Physica Sinica, 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [12] Xie Wen-Jia, Li Hua, Pan Sha, Tian Zheng-Yu. On the accuracy and robustness of a new flux splitting method. Acta Physica Sinica, 2015, 64(2): 024702. doi: 10.7498/aps.64.024702
    [13] Feng Pei-Pei, Wu Han, Zhang Nan. Study of the time-resolved emission spectra of the ejected plume generated by ultrashort laser ablation of graphite. Acta Physica Sinica, 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [14] Fu Jia, Yi Shi-He, Wang Xiao-Hu, Zhang Qing-Hu, He Lin. Experimental study on flow visualization of hypersonic flat plate boundary layer. Acta Physica Sinica, 2015, 64(1): 014704. doi: 10.7498/aps.64.014704
    [15] Wang Xiao-Hu, Yi Shi-He, Fu Jia, Lu Xiao-Ge, He Lin. Experimental investigation on surface heat transfer characteristics of hypersonic two-dimensional rearward-facing step flow. Acta Physica Sinica, 2015, 64(5): 054706. doi: 10.7498/aps.64.054706
    [16] Wang Wen-Ting, Zhang Nan, Wang Ming-Wei, He Yuan-Hang, Yang Jian-Jun, Zhu Xiao-Nong. Shock temperature of femtosecond laser ablation of solid target. Acta Physica Sinica, 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [17] Lu Hai-Bo, Liu Wei-Qiang. Cooling efficiency investigation of forward-facing cavity and opposing jet combinatorial thermal protection system. Acta Physica Sinica, 2012, 61(6): 064703. doi: 10.7498/aps.61.064703
    [18] Nie Tao, Liu Wei-Qiang. Study of coupled fluid and solid for a hypersonic lending edge. Acta Physica Sinica, 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [19] Yuan Xing-Qiu, Li Hui, Zhao Tai-Ze, Yu Guo-Yang, Guo Wen-Kang, Xu Ping. Numerical modeling of supersonic plasma jet. Acta Physica Sinica, 2004, 53(8): 2638-2643. doi: 10.7498/aps.53.2638
    [20] ZHANG SHU-DONG, ZHANG WEI-JUN. VELOCITY OF EMISSION PARTICLES AND SHOCKWAVE PRODUCED BY LASER-ABLATED Al TARGET. Acta Physica Sinica, 2001, 50(8): 1512-1516. doi: 10.7498/aps.50.1512
Metrics
  • Abstract views:  368
  • PDF Downloads:  4
  • Cited By: 0
Publishing process
  • Received Date:  08 February 2025
  • Accepted Date:  14 March 2025
  • Available Online:  01 April 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map