-
对迎风凹腔与逆向喷流组合热防护系统的冷却效果进行了分析, 研究了相同总压不同流速的逆向喷流对组合结构的流场、气动受力及壁面传热的影响. 通过与相关的实验结果对比, 验证了数值方法的可靠性. 研究发现:该结构能够有效地对飞行器鼻锥表面进行冷却, 引入很小总压的逆向喷流(逆喷总压比 PR=0.1), 组合结构的冷却效果就可以远远优于单一的迎风凹腔; 相同逆向喷流总压下, 逆喷速度越高, 逆喷流量越大, 外壁面的冷却效果越好; 随逆喷流速提高, 气动阻力也进一步减小. 本文研究的组合结构非常适用于远程、 需长时间飞行的高超声速飞行器的热防护.The cooling efficiency of a forward-facing cavity and opposing jet combinatorial thermal protection system is investigated, by which the flow field parameters, the aerodynamic force, and the surface heat flux distribution are obtained. The numerical simulation method is validated by experiment with no opposing jet model. The analysis of the numerical simulation results shows that this kind of combinatorial thermal protection system has an excellent effect on cooling the outer body surface of the nose-tip. By introducing an opposing jet with a small total pressure (total pressure ratio PR is 0.1), the cooling effect of combinatorial configuration can be much better than that of a single cavity. With the opposing jet speed increasing, the cooling efficiency is improved and the aerodynamic resistance is reduced. The combinatorial system is suited for the thermal protection of hypersonic aircraft that needs a long-distance and long-time flight.
-
Keywords:
- thermal protection system /
- hypersonic /
- forward-facing cavity /
- opposing jet
[1] Zheng T L,Zou J C,Yu B 2005 Chinese J.Aeronaut.18 372
[2] Ye H,Geng X 2011 Sci.China:Tech.Sci.41 102 (in Chinese) [叶宏, 耿雪 2011 中国科学:技术科学 41 102]
[3] Hartmann J,Troll B 1922 Phys.Rev.20 719
[4] Burbank P B,Stallings R L 1959 NASA TM X-221
[5] Yuceil B,Dolling D S,Wilson D 1993 AIAA 1993-2742
[6] Silton S I,Goldstein D B 2000 AIAA 2000-0204
[7] Silton S I,Goldstein D B 2005 J.Fluid Mech.528 297
[8] Saravanan S,Jagadeesh G,Reddy K P J 2009 J.Spacecraft Rockets 46 557
[9] Engblom W A,Goldstein D B 1997 J.Spacecraft Rockets 34 437
[10] Warren C H E 1960 J.Fluid Mech.8 400
[11] Meyer B,Nelson H F,Riggins D 2001 J.Aircraft 38 680
[12] Aso S,Hayashi K,Mizoguchi M 2002 AIAA 2002-0646
[13] Hayashi K,Aso S 2003 AIAA 2003-4041
[14] Hayashi K,Aso S,Tani Y 2006 J.Spacecraft Rockets 43 233
[15] Tian T,Yan C 2008 J.Beijing Univ.Aero.Astron.34 9 (in Chinese)[田婷,阎超 \2008 北京航空航天大学学报 34 9]
-
[1] Zheng T L,Zou J C,Yu B 2005 Chinese J.Aeronaut.18 372
[2] Ye H,Geng X 2011 Sci.China:Tech.Sci.41 102 (in Chinese) [叶宏, 耿雪 2011 中国科学:技术科学 41 102]
[3] Hartmann J,Troll B 1922 Phys.Rev.20 719
[4] Burbank P B,Stallings R L 1959 NASA TM X-221
[5] Yuceil B,Dolling D S,Wilson D 1993 AIAA 1993-2742
[6] Silton S I,Goldstein D B 2000 AIAA 2000-0204
[7] Silton S I,Goldstein D B 2005 J.Fluid Mech.528 297
[8] Saravanan S,Jagadeesh G,Reddy K P J 2009 J.Spacecraft Rockets 46 557
[9] Engblom W A,Goldstein D B 1997 J.Spacecraft Rockets 34 437
[10] Warren C H E 1960 J.Fluid Mech.8 400
[11] Meyer B,Nelson H F,Riggins D 2001 J.Aircraft 38 680
[12] Aso S,Hayashi K,Mizoguchi M 2002 AIAA 2002-0646
[13] Hayashi K,Aso S 2003 AIAA 2003-4041
[14] Hayashi K,Aso S,Tani Y 2006 J.Spacecraft Rockets 43 233
[15] Tian T,Yan C 2008 J.Beijing Univ.Aero.Astron.34 9 (in Chinese)[田婷,阎超 \2008 北京航空航天大学学报 34 9]
计量
- 文章访问数: 7104
- PDF下载量: 707
- 被引次数: 0