搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

表面烧蚀对等离子体的影响及其与电磁场相互作用

丁明松 刘庆宗 江涛 傅杨奥骁 李鹏 梅杰

引用本文:
Citation:

表面烧蚀对等离子体的影响及其与电磁场相互作用

丁明松, 刘庆宗, 江涛, 傅杨奥骁, 李鹏, 梅杰

Influence of surface ablation on plasma and its interaction with electromagnetic field

Ding Ming-Song, Liu Qing-Zong, Jiang Tao, Fu Yang-Ao-Xiao, Li Peng, Mei Jie
PDF
HTML
导出引用
  • 表面烧蚀显著影响高速流动中等离体子鞘分布及其与电磁场相互作用的特征. 考虑高超声速飞行器表面烧蚀引射机制、烧蚀产物参与流场等离子体生成过程、含碱金属的混合电离气体导电机理和电磁动力学机制, 通过耦合求解带电磁源项的三维热化学非平衡流动控制方程、电场泊松方程和磁矢量泊松方程, 建立了含碱金属烧蚀的高速流动/等离子体/电磁场耦合计算方法, 结合常见的碳碳材料和硅基酚醛树脂材料烧蚀热解过程, 较为系统地开展了多种条件下表面烧蚀对高超等离子体鞘影响及其与电磁场相互作用的机制与规律研究. 研究表明: 烧蚀效应对流场等离子体分布的影响受烧蚀质量引射率和碱金属质量占比共同作用, 当碱金属含量较高时, 碱金属电离反应占主导, 电子数密度可增大1—2个数量级; 不同材料烧蚀对等离子体的影响存在差别, 硅基酚醛树脂的烧蚀质量引射率较大, 电离生成CO+, C+的摩尔分数接近空气主要电离组分NO+, ${\mathrm{O}}_2^+ $, 其影响不容忽视; 烧蚀材料中碱金属可以显著提升磁流体力学控制效果, 随着碱金属占比增大, 电磁场耦合作用效果增强, 二者呈非线性关系; 在速度较低时, 纯空气本身的电离度低导致电磁场耦合作用效果弱, 通过含碱金属烧蚀来提升电磁作用效果的效率更高.
    Surface ablation significantly affects the distribution of plasma in high-speed flow and the characteristics of its interaction with electromagnetic fields. Considering the mechanism of ablation and ejection on the surface of hypersonic vehicle, the participation of ablation products in the plasma generating process in the flow field, the conduction mechanism of mixed ionized gas containing alkali metal and the electromagnetic dynamics mechanism, the coupled calculation method of high-speed flow/plasma/electromagnetic field with alkali metal ablation is established by solving the three-dimensional thermochemical non-equilibrium flow governing equation with electromagnetic source term, the electric field Poisson equation and the magnetic vector Poisson equation. Combined with the common ablation and pyrolysis process of carbon-carbon materials and silicon-based phenolic resin materials, the mechanism and law of the interaction between surface ablation and electromagnetic field on the hypersonic plasma sheath under various conditions are systematically studied. The results show that the ablation effect affects the plasma distribution in the flow field, which is affected by the ablation mass ejection rate and the mass proportion of alkali metal. When the alkali metal content is high, the alkali metal ionization reaction is dominant, and the electron number density can increase by 1–2 orders of magnitude. The influences of different materials on plasma are different. The mass ejector ratio of silicon-based phenolic resin is larger, and the molar concentration of CO+ and C+ produced by ionization is close to that of NO+ and ${\mathrm{O}}_2^+ $, which cannot be ignored. Alkali metal in ablative material can significantly improve the control effect of magnetohydrodynamics. With the increase of the proportion of alkali metal, the coupling effect of electromagnetic field increases, and the relationship between them is nonlinear. When the speed is low, the ionization degree of air itself is low and the coupling effect of electromagnetic field is weak. But the efficiency of “improving the electromagnetic effect by ablation of alkali metal” is higher.
      通信作者: 刘庆宗, 546680018@qq.com
    • 基金项目: 国家重点研发计划 (批准号: 2019YFA0405203)和国家数值风洞工程资助的课题.
      Corresponding author: Liu Qing-Zong, 546680018@qq.com
    • Funds: Project supported by the National Key R & D Program of China (Grant No. 2019YFA0405203) and the National Numerical Wind Tunnel Project of China.
    [1]

    田正雨 2008 博士学位论文(长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009Google Scholar

    [3]

    党文伟, 李晓升 2020 涂层与防护 41 33

    Dang W W, Li X S 2020 Coat. Prot. 41 33

    [4]

    柴栋, 方洋旺, 童中翔, 高翔 2013 航空动力学报 28 1962

    Chai D, Fang Y W, Tong Z X, Gao X 2013 J. Aerosp. Power 28 1962

    [5]

    Otsu H, Matsuda A, Abe T, Konigorski D 2006 37th AIAA Plasmadynamics and Lasers Conference California, USA, June 5–8, 2006 AIAA 2006–3236

    [6]

    Boettcher C 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, Texas, USA, June 22–25, 2009 AIAA 2009–7254

    [7]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference California, USA, June 24–27, 2013 AIAA 2013–3000

    [8]

    Fujino T, Takahashi T 2016 47th AIAA Plasmadynamics and Lasers Conference Washington DC, USA, 13–17 June, 2016 AIAA 2016–3227

    [9]

    Masuda K, Shimosawa Y, Fujino T 2015 46th AIAA Plasmadynamics and Lasers Conference Dallas, USA, June 22–26, 2015 AIAA 2015–3366

    [10]

    Robin A M, Adam S P, Partho P 2019 J. Thermophysics Heat TR 33 1018Google Scholar

    [11]

    Daniel R S, David E G, Peter A J, Cullen T G, James C M 2020 AIAA J. 58 4495Google Scholar

    [12]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27–30, 2011, AIAA 2011–897

    [13]

    曾学军, 李海燕 2017 宇航学报 38 109

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109

    [14]

    李开 2017 博士学位论文(长沙: 国防科学技术大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [15]

    Park C, Howe J T, Jaffe R L 1994 J. Thermophysics Heat TR 8 9Google Scholar

    [16]

    Beijing: National Defence Industry Press) [乐嘉陵 2005 再入物理(北京: 国防工业出版社]

    Le J L 2005 Reentry Physics

    [17]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar

    [18]

    Macheret S O, Shneider M N 2004 35th AIAA Plasmadynamics and Lasers Conference Oregon, USA, June 28–July 1, 2004 AIAA 2004–1024

    [19]

    李开, 柳军, 刘伟强 2017 66 054701Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar

    [20]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

    [21]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁 2020 航空学报 41 123278

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S 2020 Acta Aeronaut. Astronaut. Sin. 41 123278

    [22]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2020 69 134702Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fu Y A X 2020 Acta Phys. Sin. 69 134702Google Scholar

    [23]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁, 傅杨奥骁 2020 航空学报 42 124501Google Scholar

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S, Fu Y A X 2020 Acta Aeronaut. Astronaut. Sin. 42 124501Google Scholar

    [24]

    Keenan J A, Candler G V 1993 24th AIAA Plasmadynamics and Lasers Conference Orlando, USA, June 6–9, 1993 AIAA 93–2789

    [25]

    董维中, 高铁锁2010 空气动力学学报 28 708

    Dong W Z, Gao T S 2010 Acta Aerodyn. Sin. 28 708

    [26]

    Fujino T, Ishikawa M 2006 IEEE T. Plasma Sci. 34 409Google Scholar

    [27]

    Dunn M G, Kang S W 1973 NASA CR-2232

    [28]

    Candler G V, Maccormack R W 1988 19th AIAA Plasmadynamics and Lasers Conference, USA, June, 1988 AIAA 1988–511

    [29]

    李开, 刘伟强 2016 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [30]

    姚霄, 刘伟强, 谭建国 2018 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

  • 图 1  非平衡流动和烧蚀耦合 (a)驻点线组分(文献[24]); (b)驻点线组分(本文); (c)表面热流

    Fig. 1.  Non-equilibrium flow coupling with ablation: (a) Stationary line components (Ref. [24]); (b) stationary line components (this study); (c) surface heat flux.

    图 2  非平衡流场磁流体力学控制 (a)流场压力分布; (b)驻点线温度分布

    Fig. 2.  MHD control of non-equilibrium flow: (a) Flow field pressure distribution; (b) temperature distribution of stagnation line.

    图 3  RAM-C电子数密度分布(无烧蚀、无磁场)

    Fig. 3.  Electronic number density of RAM-C (No Abl., No Mag.).

    图 4  不同表面材料流场电子数密度分布比较(无碱金属杂质D = 0) (a) C-C和无烧蚀; (b) Si-PR和无烧蚀

    Fig. 4.  Electronic number density of different surface materials (D = 0): (a) C-C and no ablation; (b) Si-PR and no ablation.

    图 5  驻点线电子数密度和电导率分布(无碱金属) (a)电子数密度; (b)电导率

    Fig. 5.  Electronic number density and conductivity along stagnation line (D = 0): (a) Electronic number density; (b) conductivity.

    图 6  表面烧蚀的质量引射率和流场中烧蚀产物分布 (a)表面烧蚀的质量引射率; (b)烧蚀产物质量分数

    Fig. 6.  Ablative mass generation rate and its products: (a) The mass ejection rate of surface ablation; (b) mass fraction of ablation products.

    图 7  驻点线主要电离组分分布(无碱金属) (a) C-C材料烧蚀电离组分摩尔分数; (b)硅基酚醛树脂烧蚀电离组分摩尔分数; (c) C和CO+质量分数

    Fig. 7.  Main ionizing components along stagnation line(D = 0): (a) Molar fraction of ablative ionization components in C-C materials; (b) molar fraction of ablative ionization components in silicon-based phenolic resin; (c) quality scores of C and CO+.

    图 8  驻点线电子数密度和电导率分布(不同碱金属含量) (a) C-C材料烧蚀流场电导率; (b) C-C材料烧蚀流场电子数密度; (c) Si-PR材料烧蚀流场电导率; (d) Si-PR材料烧蚀流场电子数密度; (e) Si-PR材料烧蚀流场NO+和Na+

    Fig. 8.  Electronic number density and conductivity along stagnation line (different alkali metal content ratios): (a) Electrical conductivity of C-C material ablation flow field; (b) electron number density in the ablation flow field of C-C materials; (c) Si-PR material ablation flow field conductivity; (d) electron number density in the ablation flow field of Si PR material; (e) Si-PR material ablation flow field NO+ and Na+.

    图 9  磁场对驻点线温度分布的影响 (a) C-C材料; (b) Si-PR材料

    Fig. 9.  Effect of magnetic field on temperature along stagnation line: (a) C-C materials; (b) Si-PR material.

    图 10  磁场对表面热流的影响(不同材料和碱金属含量) (a) C-C烧蚀表面热流; (b) Si-PR烧蚀表面热流; (c)驻点热流磁控下降幅度

    Fig. 10.  Effect of magnetic field on heat flux (different materials and alkali metal content ratios): (a) C-C ablation surface heat flux; (b) Si-PR ablation surface heat flux; (c) decline amplitude of stationary heat flux magnetic control.

    图 11  流场环形感应电流和洛伦兹力矢量分布(碱金属D = 0.01)

    Fig. 11.  Annular electric current and Lorentz force vector (alkali metal D = 0.01).

    图 12  不同高度条件下磁场使驻点热流下降的幅度

    Fig. 12.  Reduction of stagnation heat flux caused by magnetic field under different conditions.

    图 13  不同高度条件的烧蚀质量引射率、电导率及磁相互作用数 (a) 壁面烧蚀质量引射率; (b)电导率峰值; (c)磁相互作用数

    Fig. 13.  Ablative mass generation rate, conductivity and magnetic interaction number under different conditions: (a) Wall erosion mass injection rate; (b) peak conductivity; (c) number of magnetic interactions.

    图 14  不同速度条件下磁场使驻点热流下降的幅度

    Fig. 14.  Reduction of stagnation heat flux caused by magnetic field under different velocity conditions.

    图 15  不同速度条件的流场电子数密度峰值和驻点热流 (a)电子数密度峰值; (b)驻点热流

    Fig. 15.  Electronic number density and stagnation heat flux under different velocity conditions: (a) Peak electron number density; (b) stagnation heat flux.

    表 1  干燥空气主要电离机制

    Table 1.  Chemical ionization model of air.

    序号 反应 反应类型
    1 O + N + 2.76 eV ⇔ NO+ + e 缔合电离
    2 N + N + 5.82 eV ⇔ $\rm N_2^+$+e 缔合电离
    3 O + O + 6.96 eV ⇔ $\rm O_2^+ $ + e 缔合电离
    4 NO + M + 9.25 eV ⇔ NO+ + e + M 碰撞电离
    5 O2 + M + 12.08 eV ⇔ $\rm O_2^+ $ + e + M 碰撞电离
    6 O + M + 13.61 eV ⇔ O+ + e + M 碰撞电离
    7 N + M + 14.54 eV ⇔ N+ + e + M 碰撞电离
    8 N2 + M + 15.58 eV ⇔ $\rm N_2^+ $ + e + M 碰撞电离
    9 O + e + M – 1.46 eV ⇔ O + M 附着电离
    10 O2 + e + M – 0.44 eV ⇔ $\rm O_2^- $ + M 附着电离
    下载: 导出CSV

    表 2  含C的主要电离反应

    Table 2.  Chemical ionization model of C components.

    序号 反应 序号 反应
    1 C + O⇔ CO+ + e 4 C+ + CO ⇔ CO+ + C
    2 C + e ⇔ C+ + e + e 5 C+ + O2 ⇔$\rm O_2^+ $ + C
    3 NO+ + C ⇔ NO + C+
    下载: 导出CSV

    表 3  含Na的主要电离反应

    Table 3.  Chemical ionization model of Na components.

    序号 反应
    1 Na + M ⇔ Na+ + e + M
    2 Na + CO2 ⇔ Na+ + e + CO2
    3 Na + H2O ⇔ Na+ + e + H2O
    4 Na+ + NO ⇔ NO+ + Na
    5 Na+ + O2 ⇔ $\rm O_2^+ $ + Na
    下载: 导出CSV
    Baidu
  • [1]

    田正雨 2008 博士学位论文(长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [2]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁 2019 航空学报 40 123009Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S 2019 Acta Aeronaut. Astronaut. Sin. 40 123009Google Scholar

    [3]

    党文伟, 李晓升 2020 涂层与防护 41 33

    Dang W W, Li X S 2020 Coat. Prot. 41 33

    [4]

    柴栋, 方洋旺, 童中翔, 高翔 2013 航空动力学报 28 1962

    Chai D, Fang Y W, Tong Z X, Gao X 2013 J. Aerosp. Power 28 1962

    [5]

    Otsu H, Matsuda A, Abe T, Konigorski D 2006 37th AIAA Plasmadynamics and Lasers Conference California, USA, June 5–8, 2006 AIAA 2006–3236

    [6]

    Boettcher C 2009 40th AIAA Plasmadynamics and Lasers Conference San Antonio, Texas, USA, June 22–25, 2009 AIAA 2009–7254

    [7]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference California, USA, June 24–27, 2013 AIAA 2013–3000

    [8]

    Fujino T, Takahashi T 2016 47th AIAA Plasmadynamics and Lasers Conference Washington DC, USA, 13–17 June, 2016 AIAA 2016–3227

    [9]

    Masuda K, Shimosawa Y, Fujino T 2015 46th AIAA Plasmadynamics and Lasers Conference Dallas, USA, June 22–26, 2015 AIAA 2015–3366

    [10]

    Robin A M, Adam S P, Partho P 2019 J. Thermophysics Heat TR 33 1018Google Scholar

    [11]

    Daniel R S, David E G, Peter A J, Cullen T G, James C M 2020 AIAA J. 58 4495Google Scholar

    [12]

    Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27–30, 2011, AIAA 2011–897

    [13]

    曾学军, 李海燕 2017 宇航学报 38 109

    Zeng X J, Li H Y 2017 J. Astronaut. 38 109

    [14]

    李开 2017 博士学位论文(长沙: 国防科学技术大学)

    Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology

    [15]

    Park C, Howe J T, Jaffe R L 1994 J. Thermophysics Heat TR 8 9Google Scholar

    [16]

    Beijing: National Defence Industry Press) [乐嘉陵 2005 再入物理(北京: 国防工业出版社]

    Le J L 2005 Reentry Physics

    [17]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030Google Scholar

    [18]

    Macheret S O, Shneider M N 2004 35th AIAA Plasmadynamics and Lasers Conference Oregon, USA, June 28–July 1, 2004 AIAA 2004–1024

    [19]

    李开, 柳军, 刘伟强 2017 66 054701Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 054701Google Scholar

    [20]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2019 68 174702Google Scholar

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2019 Acta Phys. Sin. 68 174702Google Scholar

    [21]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁 2020 航空学报 41 123278

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S 2020 Acta Aeronaut. Astronaut. Sin. 41 123278

    [22]

    丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁 2020 69 134702Google Scholar

    Ding M S, Jiang T, Liu Q Z, Dong W Z, Gao T S, Fu Y A X 2020 Acta Phys. Sin. 69 134702Google Scholar

    [23]

    丁明松, 刘庆宗, 江涛, 董维中, 高铁锁, 傅杨奥骁 2020 航空学报 42 124501Google Scholar

    Ding M S, Liu Q Z, Jiang T, Dong W Z, Gao T S, Fu Y A X 2020 Acta Aeronaut. Astronaut. Sin. 42 124501Google Scholar

    [24]

    Keenan J A, Candler G V 1993 24th AIAA Plasmadynamics and Lasers Conference Orlando, USA, June 6–9, 1993 AIAA 93–2789

    [25]

    董维中, 高铁锁2010 空气动力学学报 28 708

    Dong W Z, Gao T S 2010 Acta Aerodyn. Sin. 28 708

    [26]

    Fujino T, Ishikawa M 2006 IEEE T. Plasma Sci. 34 409Google Scholar

    [27]

    Dunn M G, Kang S W 1973 NASA CR-2232

    [28]

    Candler G V, Maccormack R W 1988 19th AIAA Plasmadynamics and Lasers Conference, USA, June, 1988 AIAA 1988–511

    [29]

    李开, 刘伟强 2016 65 064701Google Scholar

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701Google Scholar

    [30]

    姚霄, 刘伟强, 谭建国 2018 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

  • [1] 杨雨森, 王林, 苟德梽, 唐正明. 等离子体-光子晶体阵列结构波导模型的电磁特性研究.  , 2024, 73(24): . doi: 10.7498/aps.73.20241300
    [2] 李文秋, 唐彦娜, 刘雅琳, 马维聪, 王刚. 各向同性等离子体覆盖金属天线辐射增强现象.  , 2023, 72(13): 135202. doi: 10.7498/aps.72.20230101
    [3] 牛中国, 许相辉, 王建锋, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验.  , 2022, 71(2): 024702. doi: 10.7498/aps.71.20211425
    [4] 牛海波, 易仕和, 刘小林, 霍俊杰, 冈敦殿. 高超声速三角翼上横流不稳定性的实验研究.  , 2021, 70(13): 134701. doi: 10.7498/aps.70.20201777
    [5] 牛中国, 许相辉, 王建峰, 蒋甲利, 梁华. 飞翼模型纵向气动特性等离子体流动控制试验研究.  , 2021, (): . doi: 10.7498/aps.70.20211425
    [6] 张世健, 喻晓, 钟昊玟, 梁国营, 许莫非, 张楠, 任建慧, 匡仕成, 颜莎, GennadyEfimovich Remnev, 乐小云. 烧蚀对强脉冲离子束在高分子材料中能量沉积的影响.  , 2020, 69(11): 115202. doi: 10.7498/aps.69.20200212
    [7] 蔡颂, 陈根余, 周聪, 周枫林, 李光. 脉冲激光烧蚀材料等离子体反冲压力物理模型研究与应用.  , 2017, 66(13): 134205. doi: 10.7498/aps.66.134205
    [8] 余觉知, 胡勇胜, 李泓, 黄学杰, 陈立泉. 一类阴离子自由基液态电极材料研究.  , 2017, 66(8): 088201. doi: 10.7498/aps.66.088201
    [9] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云. 强脉冲离子束辐照金属材料烧蚀产物特性分析.  , 2017, 66(5): 055202. doi: 10.7498/aps.66.055202
    [10] 冯培培, 吴寒, 张楠. 超短脉冲激光烧蚀石墨产生的喷射物的时间分辨发射光谱研究.  , 2015, 64(21): 214201. doi: 10.7498/aps.64.214201
    [11] 李志辉, 彭傲平, 方方, 李四新, 张顺玉. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究.  , 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [12] 陈文波, 龚学余, 路兴强, 冯军, 廖湘柏, 黄国玉, 邓贤君. 基于动理论模型的一维等离子体电磁波传输特性分析.  , 2014, 63(21): 214101. doi: 10.7498/aps.63.214101
    [13] 王文亭, 张楠, 王明伟, 何远航, 杨建军, 朱晓农. 飞秒激光烧蚀金属靶的冲击温度.  , 2013, 62(21): 210601. doi: 10.7498/aps.62.210601
    [14] 郑灵, 赵青, 罗先刚, 马平, 刘述章, 黄成, 邢晓俊, 张春艳, 陈旭霖. 等离子体中电磁波传输特性理论与实验研究.  , 2012, 61(15): 155203. doi: 10.7498/aps.61.155203
    [15] 付志坚, 陈其峰, 陈向荣. 部分电离金属钛和银等离子体输运性质的计算.  , 2011, 60(5): 055202. doi: 10.7498/aps.60.055202
    [16] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , 2011, 60(2): 025203. doi: 10.7498/aps.60.025203
    [17] 王 彬, 谢文楷. 等离子体加载耦合腔慢波结构色散分析.  , 2007, 56(12): 7138-7146. doi: 10.7498/aps.56.7138
    [18] 吴 迪, 宫 野, 刘金远, 王晓钢, 刘 悦, 马腾才. 强流脉冲离子束烧蚀等离子体向背景气体中喷发的数值研究.  , 2007, 56(1): 333-337. doi: 10.7498/aps.56.333
    [19] 苏纬仪, 杨 涓, 魏 昆, 毛根旺, 何洪庆. 金属平板前等离子体的电磁波功率反射系数计算分析.  , 2003, 52(12): 3102-3107. doi: 10.7498/aps.52.3102
    [20] 董贾福, 唐年益, 李伟, 罗俊林, 郭干诚, 钟云泽, 刘仪, 傅炳忠, 姚良骅, 冯北滨, 秦运文. HL-1M装置超声分子束注入等离子体穿透特性的诊断.  , 2002, 51(9): 2074-2079. doi: 10.7498/aps.51.2074
计量
  • 文章访问数:  1856
  • PDF下载量:  43
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-11-01
  • 修回日期:  2024-03-20
  • 上网日期:  2024-04-17
  • 刊出日期:  2024-06-05

/

返回文章
返回
Baidu
map