-
高能量密度纳秒量级强脉冲离子束辐照材料表面的烧蚀产物和束流的相互作用, 可能对束流在靶中的能量沉积产生影响, 进而影响烧蚀情况下的束流分析和相关应用的优化. 本文采用红外成像方法对横截面能量密度1.5—1.8 J/cm2的强脉冲离子束在304不锈钢和高分子材料上的能量沉积进行了测量分析. 结果表明在高分子材料上, 在超过一定能量密度后, 束流引发材料表面烧蚀产物的屏蔽效应使得大部分束流能量不能沉积在靶上. 采用有限元方法对束流引发的温度场分布进行了计算, 验证了高分子材料的低热导率以及低分解温度使其在脉冲辐照早期即开始热解, 烧蚀产物对后续束流能量的进一步沉积产生屏蔽. 此类效应在金属上存在的可能性和对束流诊断等应用的影响, 亦进行了讨论.Short-pulse length and high-power density, intense pulsed ion beam (IPIB) has been widely studied in material processing during past decades. Ablation effect plays a great role in the interaction between IPIB and material and may affect the energy deposition of IPIB, thus further influencing the beam application and diagnostics. Therefore, the investigation of ablation effect on energy deposition of IPIB in the irradiated material is of great significance for its applications and diagnostic techniques. In this work, experiments on the IPIB irradiation are carried out on the BIPPAB-450 accelerator at Beihang University. Its maximum accelerating voltage is 450 kV, peak current density is 150 A/cm2, energy density is 1.5–1.8 J/cm2 and pulse duration (FWHM) is 80 ns. Polymer materials which have low thermal conductivity, low decomposition temperature and thus yield to ablation under low beam density, such as polycarbonate (PC), polyvinyl chloride (PVC) and polymethyl methacrylate (PMMA), are chosen in the present research. The 304 stainless steel is used for calorimetric beam diagnostics and comparative analysis. Energy deposition in polymer material and 304 stainless steel are obtained by high infrared imaging diagnostics. It is revealed that the distributions of energy deposition in these two kinds of materials differ from each other obviously. The highest energy density deposited in the 304 stainless steel appears in the center of the irradiated area where focused is the beam with a higher energy density. However, the central energy density in polymer material turns out to be lower than the surrounding area, indicating that a large portion of the ion beam is prevented from reaching the target. Meanwhile, the simulation based on the finite element method is carried out for the thermal filed distribution and evolution under the IPIB irradiation. The simulation result indicates that the strong ablation can be generated on the target surface since the highest temperature caused by IPIB irradiation is much higher than its decomposition temperature. According to the results of experiments and simulation, the polymer material can start to be ablated at the initial stage of IPIB irradiation which will consume partial energy and the products of ablation may act as shielding to block the energy deposition in the same pulse.
-
Keywords:
- intense pulsed ion beam /
- ablation /
- energy deposition /
- shielding
[1] Humphries S J 1980 Nucl. Fusion 20 1549Google Scholar
[2] Le X Y, Zhao W J, Yan S, Han B X 2001 Curr. Appl. Phys. 1 219Google Scholar
[3] Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge-Cadet P 1998 Surf. Coat. Technol. 99 74Google Scholar
[4] Remnev G E, Isakov I F, Opekounov M S, Matvienko V M, Ryzhkov V A, Struts V K, Grushin I I, Zakoutayev A N, Potyomkin A V, Tarbokov V A, Pushkaryov A N, Kutuzov V L, Ovsyannikov M Y 1999 Surf. Coat. Technol. 114 206Google Scholar
[5] Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar
[6] 谭畅 2006 博士学位论文 (大连: 大连理工大学)
Tan C 2006 Ph.D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[7] 宫野, 刘金远, 王晓钢, 刘悦, 马腾才, 吴迪 2007 56 333Google Scholar
Gong Y, Liu J Y, Wang X G, Liu Y, Ma T C, Wu D 2007 Acta Phys. Sin. 56 333Google Scholar
[8] Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T 1997 Jpn. J. Appl. Phys. 36 4928Google Scholar
[9] 梅显秀, 徐军, 马腾才 2002 51 1875Google Scholar
Mei X X, Xu J, Ma T C 2002 Acta Phys. Sin. 51 1875Google Scholar
[10] Yatsui K, Grigoriu C, Kubo H, Masugata K, Shimotori Y 1995 Appl. Phys. Lett. 67 1214Google Scholar
[11] Nakagawa Y, Grigoriu C, Masugata K, Jiang W, Yatsui K 1998 J. Mater. Sci. 33 529Google Scholar
[12] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云 2017 66 055202Google Scholar
Zhang J, Zhong H W, Shen J, Liang G Y, Cui X J, Zhang X F, Zhang G L, Yan S, Yu X, Le X Y 2017 Acta Phys. Sin. 66 055202Google Scholar
[13] Zhang J, Yu X, Zhong H W, Wei B B, Qu M, Shen J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 365 210Google Scholar
[14] Zhang J, Zhong H W, Ye Z A, Shen J, Liang G Y, Cui X J, Yu X, Zhang X F, Zhang G L, Yan S, Remnev G E, Le X Y 2017 Laser Part. Beams 35 108Google Scholar
[15] Yu X, Shen J, Qu M, Liu W B, Zhong H W, Zhang J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 113 36Google Scholar
[16] 喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云 2015 64 216102Google Scholar
Yu X, Shen J, Zhong H W, Qu M, Zhang J, Zhang G L, Zhang X F, Yan S, Le X Y 2015 Acta Phys. Sin. 64 216102Google Scholar
[17] Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S C, Ren J H, Shang X Y, Yan S, Remnev G E, Le X Y 2020 Surf. Coat. Technol. 384 125351Google Scholar
[18] 张新兰, 张琴, 傅强, 周楠 2008 塑料工业 36 1Google Scholar
Zhang X L, Zhang Q, Fu Q, Zhou N 2008 China Plastic Industry 36 1Google Scholar
[19] 谢飞, 苏正良, 文彦飞 2014 塑料工业 42 55Google Scholar
Xie F, Su Z L, Wen Y F 2014 China Plastic Industry 42 55Google Scholar
[20] 王刚, 单岩 2005 Moldflow模具分析应用实例 (北京: 清华大学出版社) 第32页
Wang G, Shan Y 2005 Application Examples of Mold Analysis by Moldflow (Beijing: Tsinghua University Press) p32 (in Chinese)
-
图 1 IPIB辐照前后靶背面温度分布图 (a) 辐照前304不锈钢; (b) 辐照后304不锈钢; (c) 辐照后PC; (d) 辐照后PVC; (e) 辐照后PMMA
Fig. 1. Distribution of temperature on rear face before and after IPIB irradiation: (a) 304 stainless steel, before irradiation; (b) 304 stainless steel, after irradiation; (c) PC, after irradiation; (d) PVC, after irradiation; (e) PMMA, after irradiation.
-
[1] Humphries S J 1980 Nucl. Fusion 20 1549Google Scholar
[2] Le X Y, Zhao W J, Yan S, Han B X 2001 Curr. Appl. Phys. 1 219Google Scholar
[3] Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge-Cadet P 1998 Surf. Coat. Technol. 99 74Google Scholar
[4] Remnev G E, Isakov I F, Opekounov M S, Matvienko V M, Ryzhkov V A, Struts V K, Grushin I I, Zakoutayev A N, Potyomkin A V, Tarbokov V A, Pushkaryov A N, Kutuzov V L, Ovsyannikov M Y 1999 Surf. Coat. Technol. 114 206Google Scholar
[5] Zhao W J, Remnev G E, Yan S, Opekounov M S, Le X Y, Matvienko V M, Han B X, Xue J M, Wang Y G 2000 Rev. Sci. Instrum. 71 1045Google Scholar
[6] 谭畅 2006 博士学位论文 (大连: 大连理工大学)
Tan C 2006 Ph.D. Dissertation (Dalian: Dalian University of Technology) (in Chinese)
[7] 宫野, 刘金远, 王晓钢, 刘悦, 马腾才, 吴迪 2007 56 333Google Scholar
Gong Y, Liu J Y, Wang X G, Liu Y, Ma T C, Wu D 2007 Acta Phys. Sin. 56 333Google Scholar
[8] Yatsui K, Grigoriu C, Masugata K, Jiang W, Sonegawa T 1997 Jpn. J. Appl. Phys. 36 4928Google Scholar
[9] 梅显秀, 徐军, 马腾才 2002 51 1875Google Scholar
Mei X X, Xu J, Ma T C 2002 Acta Phys. Sin. 51 1875Google Scholar
[10] Yatsui K, Grigoriu C, Kubo H, Masugata K, Shimotori Y 1995 Appl. Phys. Lett. 67 1214Google Scholar
[11] Nakagawa Y, Grigoriu C, Masugata K, Jiang W, Yatsui K 1998 J. Mater. Sci. 33 529Google Scholar
[12] 张洁, 钟昊玟, 沈杰, 梁国营, 崔晓军, 张小富, 张高龙, 颜莎, 喻晓, 乐小云 2017 66 055202Google Scholar
Zhang J, Zhong H W, Shen J, Liang G Y, Cui X J, Zhang X F, Zhang G L, Yan S, Yu X, Le X Y 2017 Acta Phys. Sin. 66 055202Google Scholar
[13] Zhang J, Yu X, Zhong H W, Wei B B, Qu M, Shen J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Nucl. Instrum. Methods Phys. Res., Sect. B 365 210Google Scholar
[14] Zhang J, Zhong H W, Ye Z A, Shen J, Liang G Y, Cui X J, Yu X, Zhang X F, Zhang G L, Yan S, Remnev G E, Le X Y 2017 Laser Part. Beams 35 108Google Scholar
[15] Yu X, Shen J, Qu M, Liu W B, Zhong H W, Zhang J, Zhang Y Y, Yan S, Zhang G L, Zhang X F, Le X Y 2015 Vacuum 113 36Google Scholar
[16] 喻晓, 沈杰, 钟昊玟, 屈苗, 张洁, 张高龙, 张小富, 颜莎, 乐小云 2015 64 216102Google Scholar
Yu X, Shen J, Zhong H W, Qu M, Zhang J, Zhang G L, Zhang X F, Yan S, Le X Y 2015 Acta Phys. Sin. 64 216102Google Scholar
[17] Yu X, Zhang S J, Stepanov A V, Shamanin V I, Zhong H W, Liang G Y, Xu M F, Zhang N, Kuang S C, Ren J H, Shang X Y, Yan S, Remnev G E, Le X Y 2020 Surf. Coat. Technol. 384 125351Google Scholar
[18] 张新兰, 张琴, 傅强, 周楠 2008 塑料工业 36 1Google Scholar
Zhang X L, Zhang Q, Fu Q, Zhou N 2008 China Plastic Industry 36 1Google Scholar
[19] 谢飞, 苏正良, 文彦飞 2014 塑料工业 42 55Google Scholar
Xie F, Su Z L, Wen Y F 2014 China Plastic Industry 42 55Google Scholar
[20] 王刚, 单岩 2005 Moldflow模具分析应用实例 (北京: 清华大学出版社) 第32页
Wang G, Shan Y 2005 Application Examples of Mold Analysis by Moldflow (Beijing: Tsinghua University Press) p32 (in Chinese)
计量
- 文章访问数: 6321
- PDF下载量: 96
- 被引次数: 0