Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Simulation of infrared polarized radiation transmission characteristics of high-temperature tail flame based on Monte Carlo method

ZHOU Jin CHEN Xueqi KONG Xiaofang CAO Shuqing LIANG Yan ZHANG Shuo GU Guohua CHEN Qian WAN Minjie

Citation:

Simulation of infrared polarized radiation transmission characteristics of high-temperature tail flame based on Monte Carlo method

ZHOU Jin, CHEN Xueqi, KONG Xiaofang, CAO Shuqing, LIANG Yan, ZHANG Shuo, GU Guohua, CHEN Qian, WAN Minjie
cstr: 32037.14.aps.74.20250174
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Infrared polarization radiation of aircraft targets after being transmitted through high-temperature exhaust plumes is an important basis for infrared detection equipment to detect, identify, track and warn aircraft. At present, most of the studies on the transmission characteristics of gas polarized radiation focus on the visible wavelength band, and the research object is mainly the atmospheric environment. The study of infrared polarization radiation transmission characteristics in the special gas environment of high-temperature exhaust plume is still insufficient. In this paper, the Monte Carlo method is used to model the transmission of infrared polarized light in a high-temperature exhaust plume, and the absorption coefficients of H2O in 2.5−3.3 μm band and CO2 in 4−5 μm band are calculated using the HITRAN database. The multiple scattering process of photons in the exhaust plume space is simulated, and the changes of the cosine of motion direction and cosine of vibration direction of the photons in the collision events are analyzed at the microscopic level. Additionally, the photon characteristics are statistically analyzed based on the principles of calculating polarization and transmittance. Based on the simulation results, the changes of radiative transmittance and polarization at different transmission distances are compared with each other, and the effects of exhaust plume temperature, pressure, gas component concentration, and detection wavelength on the transmission characteristics of infrared polarized light are analyzed as well. The experimental results demonstrate that the error between the calculated radiative transmittance in this study and the HITRAN database is within 2%. The effects of temperature and pressure on the transmission characteristics of polarized light become increasingly significant as the distance increases. The pressure is negatively correlated with transmittance and polarization, while the effect of temperature is related to the gas type and the temperature range. The radiant transmittance and polarization degree decay exponentially with the absorption coefficient and transmission distance of the gas in the exhaust plume space. Different detection wavelengths also lead to differences in the transmission characteristics of polarized light.
      Corresponding author: WAN Minjie, minjiewan1992@njust.edu.cn
    • Funds: Project supported by the Equipment Pre-research Weapon Industry Application Innovation Project, China (Grant No. 627010402), the National Natural Science Foundation of China (Grant No. 62201260), and the Fundamental Research Fund for the Central Universities, China (Grant Nos. 30923011015, 30924010941).
    [1]

    Xin W, Zhong W H, Shi Y J, Shi Y M, Jing J W, Xu T F, Guo J X, Liu W Z, Li Y Z, Liang Z Z, Xin X, Cheng J L, Hu W D, Xu H Y, Liu Y C 2024 Adv. Mater. 36 2306772Google Scholar

    [2]

    Zhong F, Wang H, Wang Z, Wang Y, He T, Wu P S, Peng M, Wang H L, Xu T F, Wang F, Wang P, Miao J S, Hu W D 2021 Nano Res. 14 1840Google Scholar

    [3]

    Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M, Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308Google Scholar

    [4]

    甄玉冉, 邓杰, 布勇浩, 代旭, 余宇, 石梦碟, 王若文, 叶韬, 陈刚, 周靖 2023 红外与毫米波学报 43 52

    Zhen Y R, Deng J, Bu Y H, Dai X, Yu Y, Shi M D, Wang R W, Ye T, Chen G, Zhou J 2023 J. Infrared Millim. Waves 43 52

    [5]

    胡伟达, 李庆, 陈效双, 陆卫 2019 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [6]

    郑海晶, 白廷柱, 王全喜 2018 光子学报 47 162

    Zheng H J, Bai T Z, Wang Q X 2018 Acta Photonica Sin. 47 162

    [7]

    王子谦, 张旭东, 金海红, 范之国 2014 中国激光 41 213

    Wang Z Q, Zhang X D, Jin H H, Fan Z G 2014 Chin. J. Lasers 41 213

    [8]

    王威, 褚金奎, 崔岩, 支炜, 陈辰 2013 中国激光 40 513001Google Scholar

    Wang W, Chu J K, Cui Y, Zhi W, Chen C 2013 Chin. J. Lasers 40 513001Google Scholar

    [9]

    提汝芳, 孙晓兵, 李树, 陈震霆 2018 红外与激光工程 47 1111001Google Scholar

    Ti R F, Sun X B, Li S, Chen Z T 2018 Infrared Laser Eng. 47 1111001Google Scholar

    [10]

    Pust N J, Shaw J A 2012 Opt. Express 20 15559Google Scholar

    [11]

    胡帅, 高太长, 刘磊, 易红亮, 贲勋 2015 64 034204Google Scholar

    Hu S, Gao T C, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 034204Google Scholar

    [12]

    van der Laan J D, Wright J B, Kemme S A, Scrymgeour D A 2018 Appl. Opt. 57 5464Google Scholar

    [13]

    Wang K P 2019 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinses) [王开鹏 2019 硕士学位论文 (合肥: 合肥工业大学)]

    Wang K P 2019 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinses)

    [14]

    张肃, 战俊彤, 白思克, 付强, 段锦, 姜会林 2016 光学学报 36 729001Google Scholar

    Zhang S, Zhan J T, Bai S K, Fu Q, Duan J, Jiang H L 2016 Acta Opt. Sin. 36 729001Google Scholar

    [15]

    曾祥伟, 张燕, 杨钧秀 2023 光学学报 43 1829001Google Scholar

    Zeng X W, Zhang Y, Yang J X 2023 Acta Opt. Sin. 43 1829001Google Scholar

    [16]

    吴琼, 王博, 王涛, 朱仁江, 张鹏, 汪丽杰 2021 光子学报 50 0406002

    Wu Q, Wang B, Wang T, Zhu R J, Zhang P, Wang L J 2021 Acta Photonica Sin. 50 0406002

    [17]

    刘丹丹, 黄印博, 戴聪明, 魏合理, 饶瑞中 2013 红外与激光工程 42 1776Google Scholar

    Liu D D, Huang Y B, Dai C M, Wei H L, Rao R Z 2013 Infrared Laser Eng. 42 1776Google Scholar

    [18]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z A, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [19]

    Hopcraft K, Chang P, Walker J, Jakeman E 2000 Light Scattering from Microstructures: Lectures of the Summer School of Laredo, University of Cantabria, Laredo, Spain, September 11–13, 1998 (Berlin: Springer) pp135–158

    [20]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420Google Scholar

    [21]

    Whitney B A 2011 Fluid Flows To Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary (Singapore: World Scientific) pp151–176

    [22]

    云玉新, 吕天光, 韩洪, 王泽众, 姚金霞, 李秀卫, 赵笑笑 2011 红外与激光工程 40 992Google Scholar

    Yun Y X, Lv T G, Han H, Wang Z Z, Yao J X, Li X W, Zhao X X 2011 Infrared Laser Eng. 40 992Google Scholar

    [23]

    郑海晶, 白廷柱, 王全喜, 曹峰梅 2017 光学学报 37 0726001Google Scholar

    Zheng H J, Bai T Z, Wang Q X, Cao F M 2017 Acta Opt. Sin. 37 0726001Google Scholar

  • 图 1  Monte Carlo模拟中光子在尾焰空间的随机运动过程示意图

    Figure 1.  Schematic diagram of the random motion process of photons in the tail flame space in Monte Carlo simulation.

    图 2  Monte Carlo法基本流程图

    Figure 2.  Basic flowchart of Monte Carlo method.

    图 3  光子初始位置和初始方向示意图 (a)光子初始位置; (b)光子初始方向

    Figure 3.  Schematic diagram of initial position and direction of photons: (a) Initial position of photons; (b) initial direction of photons.

    图 4  散射过程角度变化示意图

    Figure 4.  Schematic diagram of angle variation during scattering process.

    图 5  本模型与HITRAN库关于辐亮度透过率的计算结果对比

    Figure 5.  Comparison of the calculation results of radiance transmittance between the model in this article and the HITRAN library.

    图 6  传输距离变化对不同温度尾焰空间的传输特性的影响 (a)透过率; (b)偏振度

    Figure 6.  The influence of transmission distance variation on the transmission characteristics of different temperature tail flame spaces: (a) Transmittance; (b) polarization degree.

    图 7  传输距离变化对不同压强尾焰空间的传输特性的影响 (a)透过率; (b)偏振度

    Figure 7.  The influence of transmission distance variation on the transmission characteristics of different pressure tail flame spaces: (a) Transmittance; (b) polarization degree.

    图 8  传输距离变化对不同气体组分尾焰空间的传输特性的影响 (a) H2O透过率; (b) H2O偏振度; (c) CO2透过率; (d) CO2偏振度

    Figure 8.  The influence of transmission distance variation on the transmission characteristics of different gas components in the tail flame space: (a) H2O transmittance; (b) H2O polarization degree; (c) CO2 transmittance; (d) CO2 polarization degree.

    图 9  波长变化对不同气体组分尾焰空间的传输特性的影响 (a) H2O透过率; (b) H2O偏振度; (c) CO2透过率; (d) CO2偏振度

    Figure 9.  The influence of wavelength variation on the transmission characteristics of different gas components in the tail flame space: (a) H2O transmittance; (b) H2O polarization degree; (c) CO2 transmittance; (d) CO2 polarization degree.

    Baidu
  • [1]

    Xin W, Zhong W H, Shi Y J, Shi Y M, Jing J W, Xu T F, Guo J X, Liu W Z, Li Y Z, Liang Z Z, Xin X, Cheng J L, Hu W D, Xu H Y, Liu Y C 2024 Adv. Mater. 36 2306772Google Scholar

    [2]

    Zhong F, Wang H, Wang Z, Wang Y, He T, Wu P S, Peng M, Wang H L, Xu T F, Wang F, Wang P, Miao J S, Hu W D 2021 Nano Res. 14 1840Google Scholar

    [3]

    Tong L, Huang X Y, Wang P, Ye L, Peng M, An L C, Sun Q D, Zhang Y, Yang G M, Li Z, Zhong F, Wang F, Wang Y X, Motlag M, Wu W Z, Cheng G J, Hu W D 2020 Nat. Commun. 11 2308Google Scholar

    [4]

    甄玉冉, 邓杰, 布勇浩, 代旭, 余宇, 石梦碟, 王若文, 叶韬, 陈刚, 周靖 2023 红外与毫米波学报 43 52

    Zhen Y R, Deng J, Bu Y H, Dai X, Yu Y, Shi M D, Wang R W, Ye T, Chen G, Zhou J 2023 J. Infrared Millim. Waves 43 52

    [5]

    胡伟达, 李庆, 陈效双, 陆卫 2019 68 120701Google Scholar

    Hu W D, Li Q, Chen X S, Lu W 2019 Acta Phys. Sin. 68 120701Google Scholar

    [6]

    郑海晶, 白廷柱, 王全喜 2018 光子学报 47 162

    Zheng H J, Bai T Z, Wang Q X 2018 Acta Photonica Sin. 47 162

    [7]

    王子谦, 张旭东, 金海红, 范之国 2014 中国激光 41 213

    Wang Z Q, Zhang X D, Jin H H, Fan Z G 2014 Chin. J. Lasers 41 213

    [8]

    王威, 褚金奎, 崔岩, 支炜, 陈辰 2013 中国激光 40 513001Google Scholar

    Wang W, Chu J K, Cui Y, Zhi W, Chen C 2013 Chin. J. Lasers 40 513001Google Scholar

    [9]

    提汝芳, 孙晓兵, 李树, 陈震霆 2018 红外与激光工程 47 1111001Google Scholar

    Ti R F, Sun X B, Li S, Chen Z T 2018 Infrared Laser Eng. 47 1111001Google Scholar

    [10]

    Pust N J, Shaw J A 2012 Opt. Express 20 15559Google Scholar

    [11]

    胡帅, 高太长, 刘磊, 易红亮, 贲勋 2015 64 034204Google Scholar

    Hu S, Gao T C, Liu L, Yi H L, Ben X 2015 Acta Phys. Sin. 64 034204Google Scholar

    [12]

    van der Laan J D, Wright J B, Kemme S A, Scrymgeour D A 2018 Appl. Opt. 57 5464Google Scholar

    [13]

    Wang K P 2019 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinses) [王开鹏 2019 硕士学位论文 (合肥: 合肥工业大学)]

    Wang K P 2019 M. S. Thesis (Hefei: Hefei University of Technology) (in Chinses)

    [14]

    张肃, 战俊彤, 白思克, 付强, 段锦, 姜会林 2016 光学学报 36 729001Google Scholar

    Zhang S, Zhan J T, Bai S K, Fu Q, Duan J, Jiang H L 2016 Acta Opt. Sin. 36 729001Google Scholar

    [15]

    曾祥伟, 张燕, 杨钧秀 2023 光学学报 43 1829001Google Scholar

    Zeng X W, Zhang Y, Yang J X 2023 Acta Opt. Sin. 43 1829001Google Scholar

    [16]

    吴琼, 王博, 王涛, 朱仁江, 张鹏, 汪丽杰 2021 光子学报 50 0406002

    Wu Q, Wang B, Wang T, Zhu R J, Zhang P, Wang L J 2021 Acta Photonica Sin. 50 0406002

    [17]

    刘丹丹, 黄印博, 戴聪明, 魏合理, 饶瑞中 2013 红外与激光工程 42 1776Google Scholar

    Liu D D, Huang Y B, Dai C M, Wei H L, Rao R Z 2013 Infrared Laser Eng. 42 1776Google Scholar

    [18]

    崔洪鲁, 闫召爱, 张炳炎, 郭文杰, 胡雄 2020 空间科学学报 40 1046Google Scholar

    Cui H L, Yan Z A, Zhang B Y, Guo W J, Hu X 2020 Chin. J. Space Sci. 40 1046Google Scholar

    [19]

    Hopcraft K, Chang P, Walker J, Jakeman E 2000 Light Scattering from Microstructures: Lectures of the Summer School of Laredo, University of Cantabria, Laredo, Spain, September 11–13, 1998 (Berlin: Springer) pp135–158

    [20]

    Ramella-Roman J C, Prahl S A, Jacques S L 2005 Opt. Express 13 4420Google Scholar

    [21]

    Whitney B A 2011 Fluid Flows To Black Holes: A Tribute to S Chandrasekhar on His Birth Centenary (Singapore: World Scientific) pp151–176

    [22]

    云玉新, 吕天光, 韩洪, 王泽众, 姚金霞, 李秀卫, 赵笑笑 2011 红外与激光工程 40 992Google Scholar

    Yun Y X, Lv T G, Han H, Wang Z Z, Yao J X, Li X W, Zhao X X 2011 Infrared Laser Eng. 40 992Google Scholar

    [23]

    郑海晶, 白廷柱, 王全喜, 曹峰梅 2017 光学学报 37 0726001Google Scholar

    Zheng H J, Bai T Z, Wang Q X, Cao F M 2017 Acta Opt. Sin. 37 0726001Google Scholar

  • [1] Zhang Qi-Lin, Wang Rui-Feng, Zhou Tong, Wang Yun-Jie, Liu Qi. Molecular dynamics simulation of infrared absorption spectra of one-dimensional ordered single-file water. Acta Physica Sinica, 2023, 72(8): 084207. doi: 10.7498/aps.72.20222031
    [2] Liang Ming-Hui, Zheng Fei-Hu, An Zhen-Lian, Zhang Ye-Wen. Numerical extraction of electric field distribution from thermal pulse method based on Monte Carlo simulation. Acta Physica Sinica, 2016, 65(7): 077702. doi: 10.7498/aps.65.077702
    [3] Hu Shuai, Gao Tai-Chang, Liu Lei, Yi Hong-Liang, Ben Xun. Simulation of radiation transfer properties of polarized light in non-spherical aerosol using Monte Carlo method. Acta Physica Sinica, 2015, 64(9): 094201. doi: 10.7498/aps.64.094201
    [4] Wu Geng-Kun, Ji Guang-Rong, Ji Ting-Ting, Ren Hong-Xia. Study of electromagnetic scattering from two-dimensional rough sea surface based on improved Wen’s spectrum. Acta Physica Sinica, 2014, 63(13): 134203. doi: 10.7498/aps.63.134203
    [5] Lü Jin-Guang, Liang Jing-Qiu, Liang Zhong-Zhu. Error synthesis and statistical analysis on stepped mirror array by Monte Carlo method. Acta Physica Sinica, 2012, 61(22): 220701. doi: 10.7498/aps.61.220701
    [6] Wei Ya-Na, Yang Shi-Ping. Effect of molecular internuclear distance on non-sequential double ionization. Acta Physica Sinica, 2010, 59(10): 7298-7305. doi: 10.7498/aps.59.7298
    [7] Huang Chao-Jun, Liu Ya-Feng, Long Shu-Ming, Sun Yan-Qing, Wu Zhen-Sen. Monte Carlo simulation of transfer-characteristics of electromagnetic wave propagating in soot. Acta Physica Sinica, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [8] Shi Li-Hong, Yan Wen-Bo. Study on infrared absorption spectra of congruent lithium niobate crystals at low temperature. Acta Physica Sinica, 2009, 58(7): 4987-4991. doi: 10.7498/aps.58.4987
    [9] Chen Xiao-Xue, Teng Li-Hua, Liu Xiao-Dong, Huang Qi-Wen, Wen Jin-Hui, Lin Wei-Zhu, Lai Tian-Shu. Study of injection and relaxation of electron spins in InGaN film by time-resolved absorption spectroscopy. Acta Physica Sinica, 2008, 57(6): 3853-3856. doi: 10.7498/aps.57.3853
    [10] Hao Nan, Zhou Bin, Chen Li-Min. Measurement of nitrous acid and retrieval of aerosol parameters with differential optical absorption spectroscopy. Acta Physica Sinica, 2006, 55(3): 1529-1533. doi: 10.7498/aps.55.1529
    [11] Lai Tian-Shu, Liu Lu-Ning, Lei Liang, Shou Qian, Li Xi-Ying, Wang Jia-Hui, Lin Wei-Zhu. Electron-spin polarization and its relaxation probed by femtosecond laser absorption. Acta Physica Sinica, 2005, 54(2): 967-971. doi: 10.7498/aps.54.967
    [12] Zhang Hai-Tao, Cui Rui-Zhen, Wang Dong-Sheng, Yan Ping, Chen Gang, Liu Qiang. Split Monte Carlo for impulse responses on the infrared indoor channels on the basis of Phong’s model. Acta Physica Sinica, 2005, 54(8): 3610-3615. doi: 10.7498/aps.54.3610
    [13] Wang Ling, Xu Zhi-Hai, Feng Hua-Jun. Monte Carlo simulation for diffuse backscattering of polarized light from poly-disperse highly dense media. Acta Physica Sinica, 2005, 54(6): 2694-2698. doi: 10.7498/aps.54.2694
    [14] Lao Yan-Feng, Wu Hui-Zhen. Study on infrared absorption of interfaces in direct wafer bonded InP-GaAs structures. Acta Physica Sinica, 2005, 54(9): 4334-4339. doi: 10.7498/aps.54.4334
    [15] Qi Feng, Liu Wen-Qing, Zhou Bin, Li Zhen-Bi, Cui Yan-Jun. Forecasting of the realtime data monitored by differential optical absorption spectroscopy method. Acta Physica Sinica, 2003, 52(5): 1307-1312. doi: 10.7498/aps.52.1307
    [16] Xu Sheng-Hua, Xin Yu, Ning Zhao-Yuan, Cheng Shan-Hua, Huang Song, Lu Xin-Hua, Xiang Su-Liu, Chen Jun. Blue photoluminescence of aSiOxNy films prepared by ECR-CVD. Acta Physica Sinica, 2003, 52(5): 1287-1291. doi: 10.7498/aps.52.1287
    [17] Xin Yu, Ning Zhao-Yuan, Cheng Shan-Hua, Lu Xin-Hua, Wang Mei-Fu, Xu Sheng-Hua, Ye Chao, Huang Song, Du Wei. . Acta Physica Sinica, 2002, 51(8): 1865-1869. doi: 10.7498/aps.51.1865
    [18] . Acta Physica Sinica, 2002, 51(2): 439-443. doi: 10.7498/aps.51.439
    [19] ZHOU BIN, LIU WEN-QING, QI FENG, LI ZHEN-BI, CHUI YAN-JUN. STUDY OF CONCENTRATION RETRIEVING METHOD IN DIFFERENTIAL OPTICAL ABSORPTION SPECTROSCOPY FOR MEASURING AIR POLLUTANTS. Acta Physica Sinica, 2001, 50(9): 1818-1823. doi: 10.7498/aps.50.1818
    [20] ZHANG HE-YI, TAN GUO-YING. THE POLARIZED ABSORPTION SPECTRUM AND QUANTUM STATES OF Er3+ IN SINGLE CRYSTAL LiYFLiYF4. Acta Physica Sinica, 1983, 32(9): 1204-1210. doi: 10.7498/aps.32.1204
Metrics
  • Abstract views:  382
  • PDF Downloads:  20
  • Cited By: 0
Publishing process
  • Received Date:  13 February 2025
  • Accepted Date:  12 March 2025
  • Available Online:  26 March 2025
  • Published Online:  05 June 2025

/

返回文章
返回
Baidu
map