-
When the wall temperature of the thermal protection or insulation materials on the surface of an aircraft exceeds their tolerance limits under the heating of supersonic aerodynamic heat energy, degradation damage phenomena such as high-temperature thermochemical ablation and mechanical erosion will occur in the surface area. The ablation diffusion products (ablation particles) generated are ejected into the surrounding plasma flow field and suspended around the aircraft, forming a hypersonic plasma flow field with ablation diffusion substances. The presence of ablation diffusion substances can significantly affect the physical and electromagnetic characteristics of the original plasma flow field. To address this problem, this study establishes a coupled electromagnetic model of an ablative plasma flow field surrounding a blunt-nosed cone aircraft and analyzes the antenna radiation characteristics in the wake region of the ablative flow field. The research methodology consists of several key steps: Firstly, the plasma flow field around the blunt-nosed cone is simulated using ANSYS FLUENT, a computational fluid dynamics (CFD) software. This step provides the fundamental flow field parameters (e.g., electron density, temperature, and pressure distributions). Secondly, ablation particles, generated from thermal protection material degradation, are uniformly dispersed into the plasma flow. Then, the ablative plasma flow field is obtained. Thirdly, an X-band horn antenna is designed in ANSYS HFSS and loaded into the center of the wake region of the ablative plasma flow field. Based on above models, the ray-tracing method is employed to quantitatively evaluate the attenuation of antenna radiation as it propagates through the wake region. The numerical results demonstrate that the plasma flow field enveloping the aircraft induces significant attenuation of antenna radiation energy. More noteworthy is that the presence of ablation particles within the flow field substantially amplifies this energy dissipation effect. Both the ablation particle density and size distribution are identified as dominant factors controlling radiative energy loss, exhibiting proportional relationships with the incident field's attenuation. The study systematically proves the impact of ablation particle density and size on initial field energy attenuation. This research can provide a reference for addressing the electromagnetic wave propagation underlying the information transmission bottleneck of near-space hypersonic aircraft. It also offers a theoretical basis for further in-depth research on technologies such as target detection, identification, thermal protection/insulation materials, and system design of hypersonic aircraft.
-
Keywords:
- supersonic /
- ablation /
- plasma flow /
- antenna radiation characteristics
-
[1] Korotkevich A O, Newell A C, Zakharov V E 2007 J. Appl. Phys. 102 083305
[2] Li J F, Wang Y, Zhou Z X, Yao J F, Liu J L, Lan Z H, Yuan C X 2023 Nanophotonics 12 1847
[3] Chen S G, Hou L, Shi W, Yang L, Dong C G, Wang Z Q, Chang Z S, Zhang G J 2023 IEEE Trans. THz Sci. Technol. 13 28
[4] Yang W O, Liu Q, Mao W, Gao S, Wu Z 2023 IEEE Trans. Antennas Propag. 71 2710
[5] Zhang Y, Xu G, Zheng Z 2021 Waves Random Complex Media 31 2466
[6] Bogatskaya A V, Klenov N V, Tereshonok M V,Adjemov, S S,Popov, A M 2018 J. Phys. D: Appl. Phys. 51 185602
[7] Li X P, Liu Y M, Xie K 2018 Theory and Communication Technology of Electromagnetic Wave Propagation in Plasma Sheath of High Speed Aircraft (Beijing: Science Press) p35 (in Chinese) [李小平,刘彦明,谢楷 2018 高速飞行器等离子体鞘套电磁波传播理论与通信技术(北京:科学出版社) 第35页]
[8] Sha Y X, Zhang H L, Guo X Y, Xia M Y 2019 IEEE Trans. Antennas Propag. 67 2470
[9] Li J, He M, Li X P, Zhang C F 2018 IEEE Trans. Antennas Propag. 66 3653
[10] Zhao Z, Yuan K, Tang R, Lin H, Deng X 2022 IEEE Trans. Plasma Sci. 50 517
[11] Ni Y X, Zhao Z Y, Yuan K, Tang Y X, Hong L J 2023 IEEE Trans. Plasma Sci. 51 2736
[12] Mei J, Xie Y J 2017 IEEE Trans. Plasma Sci. 45 364
[13] Xu J, Bai B W, Dong C X, Zhu Y T, Dong Y Y, Zhao G Q 2017 IEEE Antennas Wireless Propag. Lett. 16 1056
[14] Chen X Y, Li K X, Liu Y Y, Zhou Y G, Li X P, Liu Y M 2017 IEEE Trans. Plasma Sci. 45 3166
[15] Zheng Y K, Ye Y D, Tian H, Tian H, Jiang Q X 2024 Aerosp. Technol. 2 54 (in Chinese)[郑永康,叶友达,田浩,田浩,蒋勤学 2024 空天技术 2 54]
[16] Mao M Y, Peng K P, Zhao Z Y, Yuan K, Xiong J W, Tang R X, Deng X H 2024 IEEE Trans. Plasma Sci. 52 240
[17] Deng Q Q, Chen W, Yang L X, Chen C X, Bo Y, Guo L X 2024 IEEE Trans. Plasma Sci. 52 1452
[18] Guo Y J, Shi W B, Zeng L, Du L 2019 Mechanism of Ablative Thermal Protection Applied To Hypersonic Vehicles p25 ((in Chinese)[国义军,石卫波,曾磊,杜百合 2019 高超声速飞行器烧蚀防热理论与应用(北京:科学出版社) 第25页]
[19] Bisek N J, Poggie J 2011 42th AIAA Plasmadynamics and Lasers Conference Hawii, USA, June 27-30, 2011, AIAA 2011-897
[20] Zeng X J, Li H Y 2017 J. Astronaut. 38 109 (in Chinese) [曾学军, 李海燕 2017 宇航学报 38 109]
[21] Li K 2017 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese) [李开 2017 博士学位论文 (长沙: 国防科学技术大学)]
[22] Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701 (in Chinese) [李开, 刘伟强 2016 65 064701]
[23] Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702 (in Chinese) [姚霄, 刘伟强, 谭建国 2018 67 174702]
[24] Robin A M, Adam S P, Partho P 2019 J. Thermophysics Heat TR 33 1018
[25] Ding M S, Liu Q Z, Jiang T, Fu Y A X, Li P, Mei J 2024 Acta Phys. Sin. 73 115204 (in Chinese) [丁明松,刘庆宗, 江涛, 傅杨奥骁,李鹏,梅杰2024 73 115204]
[26] Shao C, Nie L, Chen W F 2016 Aerosp. Sci. and Technol. 51 151
[27] Zhao W W 2014 Ph. D. Dissertation (Hangzhou: Zhejiang University) (in Chinese) [赵文文 2014 博士学位论文(杭州:浙江大学)]
[28] Chang P C Y, Walker J G, Hopcraft K I 2005 J. Quant. Spectrosc. Radiat. Transfer 96 327
[29] Li L Q, Wei B; Yang Q, Yang X, Ge D B 2017 IEEE Trans. Antennas wireless propag. Letter. 16 2078
[30] Wang M Y, Li H L, Dong Y L, Li G P, Jiang B J, Zhao Q, Xu J 2016 IEEE Trans. Antennas Propag. 64 286
Metrics
- Abstract views: 32
- PDF Downloads: 0
- Cited By: 0