-
Dielectric laser accelerators (DLAs), as compact particle accelerators, rely critically on their structural design to determine both the energy gain and beam quality of accelerated bunches. While most existing DLAs are driven by near-infrared lasers at ~1 μm wavelength, employing long-wave infrared (LWIR) lasers at ten times that wavelength offers the potential for superior beam quality without sacrificing acceleration gradient. To address the lack of optimized structural designs in the LWIR band where long-distance acceleration poses unique challenges—we introduce a deep learning–based design methodology for LWIR dielectric grating accelerator structures. Our approach integrates geometric parameters, material properties, and optical-field energy metrics into a unified evaluation framework and uses a surrogate model to predict particle energy gain with high precision. Optimal structural parameters are then extracted to realize the final design. Simulation results show an energy gain of 99.5 keV (a 19.9% year-over-year improvement), 100% transmission efficiency, a beam spot radius of 14.5 μm, and an average beam current of 20.4 fA—6.9 fold higher than comparable near-infrared gratings—while maintaining equivalent beam brightness. This work provides a viable technical route for high-net-gain LWIR dielectric grating accelerators and offers a novel framework for the structural optimization of complex optoelectronic devices.
-
[1] Zhang Y, Fang W C, Huang X X, Tan J H, Wang C P, Zhao Z T 2021 Nucl. Sci. Tech. 32 38
[2] Tantawi S G, Dolgashev V, Higashi Y, Dolgashev V A, Cary J R, Kemp M A 2010 AIP Conf. Proc. 1299 29
[3] Higo T, Higashi Y, Matsumoto S, Yokoyama K, Doebert S, Grudiev A, Riddone G, Wuensch W, Zennaro R, Adolphsen C, Dolgashev V, Jensen A, Laurent L, Tantawi S G, Wang F, Wang J W 2010 Proc. 14th Adv. Accel. Concepts Wksp.
[4] Mizuno K, Ono S, Shimoe O 1975 Nature 253 184
[5] Soong K, Byer R L, Colby E R, England R J, Peralta E A 2012 AIP Conf. Proc. 1507 516
[6] Agustsson R, Arab E, Murokh A, O'Shea B, Ovodenko A, Pogorelsky I, Rosenzweig J, Solovyov V, Tilton R 2015 Opt. Mater. Express 5 2835
[7] Cesar D, Maxson J, Musumeci P, Shen X, England R J, Wootton K P 2018 Nucl. Instrum. Methods A 909 252
[8] Plettner T, Byer R L, Montazeri B 2011 J. Mod. Opt. 58 1518
[9] Hughes T, Veronis G, Wootton K P, England R J, Fan S 2017 Opt. Express 25 15414
[10] Tompkins H G, Tigner E L S 1993 Refractive index of optical materials in the infrared (Academic Press)
[11] Plettner T, Lu P P, Byer R L 2006 Phys. Rev. ST Accel. Beams 9 111301
[12] Peralta E A, Soong K, England R J, Colby E R, Wu Z, Montazeri B, McGuinness C, McNeur J, Leedle K J, Walz D, Sozer E B, Cowan B, Schwartz B, Travish G, Byer R L 2013 Nature 503 91
[13] Cesar D, Custodio S, Maxson J, Musumeci P, Shen X, Threlkeld E, England R J, Hanuka A, Makasyuk I V, Peralta E A, Wootton K P, Wu Z 2018 Commun. Phys. 1 46
[14] Lin X E 2001 Phys. Rev. ST Accel. Beams 4 051301
[15] Cowan B M 2008 Phys. Rev. ST Accel. Beams 11 011301
[16] Mei X, Zha R, Pan Y, Wang S, Sun B, Lei C, Ke C, Zhao Z, Wang D 2023 Ultrafast Sci. 3 0050
[17] Plettner T, Byer R L, Montazeri B 2011 J. Mod. Opt. 58 1518
[18] Plettner T, Byer R L, McGuinness C, Hommelhoff P 2009 Phys. Rev. ST Accel. Beams 12 101302
[19] Plettner T, Byer R L 2008 Phys. Rev. ST Accel. Beams 11 030704
[20] Siemann R H 2004 Phys. Rev. ST Accel. Beams 7 061303
[21] Breuer J, Graf R, Apolonski A, Hommelhoff P 2014 Phys. Rev. ST Accel. Beams 17 021301
[22] Breuer J, Hommelhoff P 2014 Nucl. Instrum. Methods Phys. Res. A.740 114
[23] Breuer J, McNeur J, Hommelhoff P 2014 J. Phys. B At. Mol. Opt. Phys. 47 234004
[24] Black D S, Zhao Z X, Leedle K J, Miao Y, Byer R L, Fan S, Solgaard O 2020 Phys. Rev. Accel. Beams. 23 114001
[25] He Y F, Sun B, Ma M J, Li W, He Q Y, Cui Z H, Wang S Y, Zhao Z Q 2022 Nucl. Sci. Tech. 33 120
[26] Ma W, Xu Y, Xiong B, Deng L, Peng R W, Wang M, Liu Y 2022 Adv. Mater. 34 2110022
[27] Liu X, Wang P, Xiao C, Fu L, Xu J, Zhang D, Zhou H, Fan T 2023 Adv. Funct. Mater. 33 2212068
[28] Zhang Q, Liu C, Wan X, Zhang L, Liu S, Yang Y, Cui T 2019 Adv. Theory Simul. 2 1800132
[29] Wang C, Cheng X, Wang R, Hu X, Wang C 2024 Laser Photonics Rev. 18 2300958
[30] Lei Z, Xu Y, Zhao Y, Wang D 2024 Photon. Res. 12 123
[31] Polyanskiy M N, Babzien M, Pogorelsky I V 2015 Optica 2 675
[32] Pogorelsky I V, Babzien M, Ben-Zvi I, Skaritka J, Polyanskiy M N 2016 Nucl. Instrum. Methods Phys. Res. A 829 432
Metrics
- Abstract views: 51
- PDF Downloads: 3
- Cited By: 0