搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可重构硅光滤波器的计算重建片上光谱仪

张赞 黄北举 陈弘达

引用本文:
Citation:

基于可重构硅光滤波器的计算重建片上光谱仪

张赞, 黄北举, 陈弘达

Computational reconstruction on-chip spectrometer based on reconfigurable silicon photonic filters

Zhang Zan, Huang Bei-Ju, Chen Hong-Da
PDF
HTML
导出引用
  • 相比于笨重的台式光谱仪, 集成化的芯片级光谱仪可以应用于便携式的健康监测、环境检测等场景 . 我们设计了一个基于硅光子平台的片上光谱仪 . 该器件由一个透射光谱可重构的硅光滤波器构成 . 通过改变滤波器的透射光谱, 可以实现对输入光谱的多次且不同的采样 . 再结合人工神经网络算法, 从采样后的信号中重建出入射光谱 . 可重构的硅光滤波器由互相耦合的马赫曾德干涉仪和微环谐振腔组成 . 采用集成的热光相移器引入相位变化, 能够对滤波器的透射光谱进行重构 . 通过这种方式, 基于单个可重构滤波器可得到包含宽、窄光谱多样特征的响应函数 . 不需要滤波器阵列, 就可以实现对入射光谱的多样化采样, 能够显著地减小光谱检测器件的面积 . 仿真结果表明, 所设计的器件在1500—1600 nm波长范围内可以实现连续光谱和稀疏光谱的重建, 分辨率约为0.2 nm . 该器件在可穿戴光学传感、便携式光谱仪等场景中具有巨大的应用潜力 .
    Spectroscopic analysis technique is an indispensable tool in many disciplines such as biomedical research, materials science, and remote sensing. Traditional benchtop spectrometers have several drawbacks; bulky, complex, and expensive, making them ineffective for emerging applications such as wearable health monitoring and Lab-on-Chip systems. Compared with bulky desktop spectrometers, integrated chip-level spectrometers find many applications in portable health monitoring, environmental sensing, and other scenarios. We design an on-chip spectrometer based on a silicon photonics platform. The device consists of a silicon photonic filter with a reconfigurable transmission spectrum.By changing the transmission spectrum of the filter, the multiple and diverse sampling of the input spectrum can be obtained. Using an artificial neural network algorithm, the incident spectrum is reconstructed from the sampled signals. The reconfigurable silicon photonic filter is composed of intercoupled Mach-Zehnder interferometer and micro-ring resonator. The introduction of thermal-optic phase shifter facilitates the reconstruction of the transmission spectrum of filter. Through this approach, a response function encompassing diverse features of broad and narrow spectra can be obtained from a single reconfigurable filter, eliminating the need for a filter array and significantly reducing the footprint of the spectrometer. Simulation results demonstrate that the designed device can achieve continuous and sparse spectrum reconstruction in a wavelength range of 1500–1600 nm, with a resolution of approximately 0.2 nm. On a test set composed of synthetic spectra, the calculated average RMSE for the reconstructed spectra is 0.0075, with an average relative error of 0.0174. Owing to the reconfigurable nature of the silicon photonic filter, this device exhibits the ability to flexibly adjust the number of sampling channels, thus enabling users to configure the chip according to specific application scenarios. This device possesses significant potential applications such as in wearable optical sensors and portable spectrometers.
      通信作者: 黄北举, bjhuang@semi.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 62341508)和中国科学院青年创新促进会(批准号: Y2022045)资助的课题.
      Corresponding author: Huang Bei-Ju, bjhuang@semi.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62341508) and the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. Y2022045).
    [1]

    Manley M 2014 Chem. Soc. Rev. 43 8200Google Scholar

    [2]

    Bacon C P, Mattley Y, DeFrece R 2004 Rev. Sci. Instrum. 75 1Google Scholar

    [3]

    Clark R N, Roush T L 1984 J. Geophys. Res. Solid Earth 89 6329Google Scholar

    [4]

    Gao L, Qu Y, Wang L, Yu Z 2022 Nanophotonics 11 2507Google Scholar

    [5]

    Wang J, Zheng B, Wang X 2021 J. Phys. Photonics 3 012006Google Scholar

    [6]

    Redding B, Liew S F, Sarma R, Cao H 2013 Nat. Photonics 7 746Google Scholar

    [7]

    Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Adv. Opt. Mater. 8 1901602Google Scholar

    [8]

    Kwak Y, Park S M, Ku Z, Urbas A, Kim Y L 2021 Nano Lett. 21 921Google Scholar

    [9]

    Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Nano Lett. 20 2625Google Scholar

    [10]

    Hadibrata W, Noh H, Wei H, Krishnaswamy S, Aydin K 2021 Laser Photonics Rev. 15 2000556Google Scholar

    [11]

    Xiong J, Cai X S, Cui K Y, Huang Y D, Yang J W, Zhu H B, Li W Z, Hong B, Rao S J, Zheng Z K, Xu S, He Y H, Liu F, Feng X, Zhang W 2022 Optica 9 461Google Scholar

    [12]

    Craig B, Shrestha V R, Meng J, Cadusch J J, Crozier K B 2018 Opt. Lett. 43 4481Google Scholar

    [13]

    Wang Z, Yi S, Chen A, Zhou M, Luk T S, James A, Nogan J, Ross W, Joe G, Shahsafi A, Wang K X, Kats M A, Yu Z 2019 Nat. Commun. 10 1020Google Scholar

    [14]

    Zhu Y B, Lei X, Wang K X Z, Yu Z F 2019 Photonics Res. 7 961Google Scholar

    [15]

    Bao J, Bawendi M G 2015 Nature 523 67Google Scholar

    [16]

    Zhu X, Bian L, Fu H, Wang L, Zou B, Dai Q, Zhang J, Zhong H 2020 Light Sci. Appl. 9 73Google Scholar

    [17]

    Piels M, Zibar D 2017 Sci. Rep. 7 43454Google Scholar

    [18]

    Redding B, Liew S F, Bromberg Y, Sarma R, Cao H 2016 Optica 3 956Google Scholar

    [19]

    Kim C, Ni P, Lee K R, Lee H N 2022 Sci. Rep. 12 4053Google Scholar

    [20]

    Zhang Z, Li Y, Wang Y, Yu Z, Sun X, Tsang H K 2021 Laser Photonics Rev. 15 2100039Google Scholar

    [21]

    Wen J, Hao L, Gao C, Wang H, Mo K, Yuan W, Chen X, Wang Y, Zhang Y, Shao Y, Yang C, Shen W 2023 ACS Photonics 10 225Google Scholar

    [22]

    Li A, Fainman Y 2021 Nat. Commun. 12 2704Google Scholar

    [23]

    Xu H, Qin Y, Hu G, Tsang H K 2023 Light Sci. Appl. 12 64Google Scholar

    [24]

    Yuan S, Naveh D, Watanabe K, Taniguchi T, Xia F 2021 Nat. Photonics 15 601Google Scholar

    [25]

    Guo L, Sun H, Wang M, Wang M, Min L, Cao F, Tian W, Li L 2022 Adv. Mater. 34 2200221Google Scholar

    [26]

    Yao C, Chen M, Yan T, Ming L, Cheng Q, Penty R 2023 Light Sci. Appl. 12 156Google Scholar

    [27]

    Yao C, Xu K, Zhang W, Chen M, Cheng Q, Penty R 2023 Nat. Commun. 14 6376Google Scholar

    [28]

    Zhang S, Dong Y, Fu H, Huang S L, Zhang L 2018 Sensors 18 644Google Scholar

    [29]

    Kim C, Park D, Lee H N 2020 Sensors 20 594Google Scholar

    [30]

    Zhang W, Song H, He X, Huang L, Zhang X, Zheng J, Shen W, Hao X, Liu X 2021 Light Sci. Appl. 10 108Google Scholar

    [31]

    涂鑫, 陈震旻, 付红岩 2019 68 104210Google Scholar

    Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar

  • 图 1  基于可重构硅光滤波器的片上光谱仪结构示意图

    Fig. 1.  Schematic diagram of the on-chip computational spectrometer based on reconfigurable silicon photonic filters.

    图 2  光谱重建过程示意图

    Fig. 2.  Spectral reconstruction procedure.

    图 3  光谱重建算法示意图

    Fig. 3.  The schematic of the spectrum reconstruction algorithm.

    图 4  (a) 仿真得到的采样矩阵热图; (b) 4个不同状态的透射光谱

    Fig. 4.  (a) Heat map of simulated sampling matrix of the devices; (b) transmission spectra of 4 different states.

    图 5  片上光谱仪的32个采样状态(64个采样通道)下透射光谱的相关系数

    Fig. 5.  Correlation coefficient of transmission spectra under 32 sampling states (64 sampling channels) of the on-chip spectrometer.

    图 6  不同类型光谱的模拟重建结果 (a) 合成宽光谱; (b) 合成窄光谱; (c), (d) ASE光源光谱

    Fig. 6.  Simulated reconstruction results of different types of spectra: (a) Synthetic broad spectrum; (b) synthetic narrow spectrum; (c), (d) ASE light source spectra.

    图 7  FWHM为1 nm的窄光谱模拟重建结果

    Fig. 7.  Narrow spectrum reconstruction results with a FWHM of 1 nm

    图 8  间隔0.2 nm的窄双峰光谱模拟重建结果

    Fig. 8.  Simulated reconstruction results of a narrow double peak spectrum separated by 0.2 nm.

    图 9  采样矩阵的平均相关系数、重建相对误差随光子滤波器的采样状态数量增大而减小

    Fig. 9.  The average correlation coefficient of the sampling matrix and the reconstruction relative error decrease as the number of sampling states of the photon filter increases.

    表 1  已报道的基于滤波器的计算光谱仪的性能比较

    Table 1.  Performance comparison of reported filter-based computational spectrometers.

    文献 器件面积
    /μm2
    分辨率
    /nm
    光学带宽
    /nm
    采样通
    道数
    [20] 220×520 0.02 12 (2条窄光谱) 64
    [22] 35×260 0.45 180 32
    [23] 60×60 0.04 100 2501
    [26] 2000×7600 0.03 125 256
    [27] 1900×3700 0.01 200 729
    本文 100×500
    (估计值)
    0.20 100 64
    下载: 导出CSV
    Baidu
  • [1]

    Manley M 2014 Chem. Soc. Rev. 43 8200Google Scholar

    [2]

    Bacon C P, Mattley Y, DeFrece R 2004 Rev. Sci. Instrum. 75 1Google Scholar

    [3]

    Clark R N, Roush T L 1984 J. Geophys. Res. Solid Earth 89 6329Google Scholar

    [4]

    Gao L, Qu Y, Wang L, Yu Z 2022 Nanophotonics 11 2507Google Scholar

    [5]

    Wang J, Zheng B, Wang X 2021 J. Phys. Photonics 3 012006Google Scholar

    [6]

    Redding B, Liew S F, Sarma R, Cao H 2013 Nat. Photonics 7 746Google Scholar

    [7]

    Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Adv. Opt. Mater. 8 1901602Google Scholar

    [8]

    Kwak Y, Park S M, Ku Z, Urbas A, Kim Y L 2021 Nano Lett. 21 921Google Scholar

    [9]

    Hartmann W, Varytis P, Gehring H, Walter N, Beutel F, Busch K, Pernice W 2020 Nano Lett. 20 2625Google Scholar

    [10]

    Hadibrata W, Noh H, Wei H, Krishnaswamy S, Aydin K 2021 Laser Photonics Rev. 15 2000556Google Scholar

    [11]

    Xiong J, Cai X S, Cui K Y, Huang Y D, Yang J W, Zhu H B, Li W Z, Hong B, Rao S J, Zheng Z K, Xu S, He Y H, Liu F, Feng X, Zhang W 2022 Optica 9 461Google Scholar

    [12]

    Craig B, Shrestha V R, Meng J, Cadusch J J, Crozier K B 2018 Opt. Lett. 43 4481Google Scholar

    [13]

    Wang Z, Yi S, Chen A, Zhou M, Luk T S, James A, Nogan J, Ross W, Joe G, Shahsafi A, Wang K X, Kats M A, Yu Z 2019 Nat. Commun. 10 1020Google Scholar

    [14]

    Zhu Y B, Lei X, Wang K X Z, Yu Z F 2019 Photonics Res. 7 961Google Scholar

    [15]

    Bao J, Bawendi M G 2015 Nature 523 67Google Scholar

    [16]

    Zhu X, Bian L, Fu H, Wang L, Zou B, Dai Q, Zhang J, Zhong H 2020 Light Sci. Appl. 9 73Google Scholar

    [17]

    Piels M, Zibar D 2017 Sci. Rep. 7 43454Google Scholar

    [18]

    Redding B, Liew S F, Bromberg Y, Sarma R, Cao H 2016 Optica 3 956Google Scholar

    [19]

    Kim C, Ni P, Lee K R, Lee H N 2022 Sci. Rep. 12 4053Google Scholar

    [20]

    Zhang Z, Li Y, Wang Y, Yu Z, Sun X, Tsang H K 2021 Laser Photonics Rev. 15 2100039Google Scholar

    [21]

    Wen J, Hao L, Gao C, Wang H, Mo K, Yuan W, Chen X, Wang Y, Zhang Y, Shao Y, Yang C, Shen W 2023 ACS Photonics 10 225Google Scholar

    [22]

    Li A, Fainman Y 2021 Nat. Commun. 12 2704Google Scholar

    [23]

    Xu H, Qin Y, Hu G, Tsang H K 2023 Light Sci. Appl. 12 64Google Scholar

    [24]

    Yuan S, Naveh D, Watanabe K, Taniguchi T, Xia F 2021 Nat. Photonics 15 601Google Scholar

    [25]

    Guo L, Sun H, Wang M, Wang M, Min L, Cao F, Tian W, Li L 2022 Adv. Mater. 34 2200221Google Scholar

    [26]

    Yao C, Chen M, Yan T, Ming L, Cheng Q, Penty R 2023 Light Sci. Appl. 12 156Google Scholar

    [27]

    Yao C, Xu K, Zhang W, Chen M, Cheng Q, Penty R 2023 Nat. Commun. 14 6376Google Scholar

    [28]

    Zhang S, Dong Y, Fu H, Huang S L, Zhang L 2018 Sensors 18 644Google Scholar

    [29]

    Kim C, Park D, Lee H N 2020 Sensors 20 594Google Scholar

    [30]

    Zhang W, Song H, He X, Huang L, Zhang X, Zheng J, Shen W, Hao X, Liu X 2021 Light Sci. Appl. 10 108Google Scholar

    [31]

    涂鑫, 陈震旻, 付红岩 2019 68 104210Google Scholar

    Tu X, Chen Z M, Fu H Y 2019 Acta Phys. Sin. 68 104210Google Scholar

  • [1] 黄宇航, 陈理想. 基于未训练神经网络的分数傅里叶变换成像.  , 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] 施岳, 欧攀, 郑明, 邰含旭, 王玉红, 段若楠, 吴坚. 基于轻量残差复合增强收敛神经网络的粒子场计算层析成像伪影噪声抑制.  , 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [3] 刘鸿江, 刘逸飞, 谷付星. 基于深度学习的微纳光纤自动制备系统.  , 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [4] 刘栋, 崔新月, 王浩东, 张贵军. 蛋白质结构模型质量评估方法综述.  , 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [5] 杜特, 马汉斯, 姜鑫鹏, 赵芬, 张兆健, 王志成, 彭政, 张伊祎, 张煜青, 罗鸣宇, 邹宏新, 吴加贵, 闫培光, 朱刚毅, 于洋, 何新, 陈欢, 张振福, 杨俊波. 片上光互连器件的智能化设计研究进展.  , 2023, 72(18): 184204. doi: 10.7498/aps.72.20230705
    [6] 欧秀娟, 肖奕. RNA扭转角预测的深度学习方法.  , 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [7] 孙涛, 袁健美. 基于深度学习原子特征表示方法的Janus过渡金属硫化物带隙预测.  , 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [8] 朱琦, 许多, 张元军, 李玉娟, 王文, 张海燕. 基于卷积神经网络的白蚀缺陷超声探测.  , 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [9] 张航瑛, 王雪琦, 王华英, 曹良才. 基于明度分量的Retinex-Net图像增强改进方法.  , 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [10] 李科, 董明利, 袁配, 鹿利单, 孙广开, 祝连庆. 基于阵列波导光栅的光纤布拉格光栅解调技术综述.  , 2022, 71(9): 094207. doi: 10.7498/aps.71.20212063
    [11] 战庆亮, 葛耀君, 白春锦. 基于深度学习的流场时程特征提取模型.  , 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [12] 南虎, 麻晓晶, 赵海博, 汤少杰, 刘卫华, 王大威, 贾春林. 基于YOLOv3框架的高分辨电镜图像原子峰位置检测.  , 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [13] 苏博, 陶芬, 李可, 杜国浩, 张玲, 李中亮, 邓彪, 谢红兰, 肖体乔. 同步辐射纳米CT图像配准方法研究.  , 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [14] 赵智鹏, 周双, 王兴元. 基于深度学习的新混沌信号及其在图像加密中的应用.  , 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [15] 王甜甜, 王慧, 朱艳春, 王丽嘉. 基于位移流U-Net和变分自动编码器的心脏电影磁共振图像左心肌运动追踪.  , 2021, 70(22): 228701. doi: 10.7498/aps.70.20210885
    [16] 徐昭, 周昕, 白星, 李聪, 陈洁, 倪洋. 基于深度学习的相位截断傅里叶变换非对称加密系统攻击方法.  , 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [17] 张瑶, 张云波, 陈立. 基于深度学习的光学表面杂质检测.  , 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [18] 陈炜, 郭媛, 敬世伟. 基于深度学习压缩感知与复合混沌系统的通用图像加密算法.  , 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [19] 郎利影, 陆佳磊, 于娜娜, 席思星, 王雪光, 张雷, 焦小雪. 基于深度学习的联合变换相关器光学图像加密系统去噪方法.  , 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [20] 周培基, 李智勇, 俞育德, 余金中. 硅基光子集成研究进展.  , 2014, 63(10): 104218. doi: 10.7498/aps.63.104218
计量
  • 文章访问数:  1707
  • PDF下载量:  62
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-02-02
  • 修回日期:  2024-05-30
  • 上网日期:  2024-06-03
  • 刊出日期:  2024-07-20

/

返回文章
返回
Baidu
map