Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Deep learning methods of predicting RNA torsion angle

Ou Xiu-Juan Xiao Yi

Citation:

Deep learning methods of predicting RNA torsion angle

Ou Xiu-Juan, Xiao Yi
PDF
HTML
Get Citation
  • Modeling of RNA tertiary structure is one of the basic problems in molecular biophysics, and it is very important in understanding the biological function of RNA and designing new structures. RNA tertiary structure is mainly determined by seven torsions of main-chain and side-chain backbone, the accurate prediction of these torsion angles is the basis of modeling RNA tertiary structure. At present, there are only a few methods of using deep learning to predict RNA torsion angles, and the prediction accuracy needs further improving if it is used to model RNA tertiary structure. In this study, we also develop a deep learning method, 1dRNA, to predict RNA backbone torsions and pseudotorsion angles, including two different deep learning models, the convolution model (DRCNN) that considers the features of adjacent nucleotides and the Hyper-long-short-term memory model (DHLSTM) that considers the features of all the nucleotides. We then empirically show that DRCNN and DHLSTM outperform existing state-of-the-art methods under the same datasets, the prediction accuracy of DRCNN model is improved by 5% to 28% for β, δ, ζ, χ, η, and θ angle, and the prediction accuracy of DHLSTM model is improved by 6% to 15% for β, δ, ζ, χ, η, θ angle. The DRCNN model predicts better results than the DHLSTM model and the existing models in the δ, ζ, χ, η, θ angle, and the DHLSTM model predicts better results than the DRCNN model and the existing model in the β and ε angles, and the existing models predicted better results than the DRCNN model and DHLSTM model in the α and γ angles. The DRCNN model and the existing models predict a richer distribution of angles than the DHLSTM model. In terms of model stability, the DHLSTM model is much more stable than the DRCNN model and the existing models, with fewer outliers. The results also show that the α angle and γ angle are the most difficult to predict, the angles of the ring region is more difficult to predict than the angles of the helix region, the model is also not sensitive to the change of the target sequence length, and the deviation of the model prediction angle from the decoys can also be used to evaluate the RNA tertiary structures quality.
      Corresponding author: Xiao Yi, yxiao@hust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 32071247).
    [1]

    Jiao K, Hao Y Y, Wang F, et al. 2021 Biophys. Rep. 7 21Google Scholar

    [2]

    Sun S, Chen X Z, Chen J, et al. 2021 Biophys. Rep. 7 8Google Scholar

    [3]

    You Y L, Tang Z M, Lin H, Shi J L 2021 Biophys. Rep. 7 159Google Scholar

    [4]

    Zhang Y, Wang J, Xiao Y 2022 J. Mol. Biol. 434 167452Google Scholar

    [5]

    Zhang Y, Wang J, Xiao Y 2020 Comput. Struct. Biotechnol. J. 18 2416Google Scholar

    [6]

    Wang J, Wang J, Huang Y Z, Xiao Y 2019 Int. J. Mol. Sci. 20 4116Google Scholar

    [7]

    Wang J, Xiao Y 2017 Curr. Protoc. Bioinf. 57 5.9.1Google Scholar

    [8]

    Wang J, Zhao Y J, Zhu C Y, Xiao Y 2015 Nucleic Acids Res. 43 e63Google Scholar

    [9]

    Zhao Y J, Huang Y Y, Gong Z, et al. 2012 Sci. Rep. 2 734Google Scholar

    [10]

    Wang J, Mao K K, Zhao Y J, Zeng C, Xiang J J, Zhang Y, Xiao Y 2017 Nucleic Acids Res. 45 6299Google Scholar

    [11]

    Olson W K 1982 Topics in Nucleic Acid Structures (Part 2) (London: Macmillan Press) pp1–79

    [12]

    Dor O, Zhou Y Q 2007 Proteins 68 76Google Scholar

    [13]

    Xue B, Dor O, Faraggi E, Zhou Y Q 2008 Proteins 72 427Google Scholar

    [14]

    Faraggi E, Xue B, Zhou Y Q 2009 Proteins 74 847Google Scholar

    [15]

    Faraggi E, Yang Y D, Zhang S H, Zhou Y Q 2009 Structure 17 1515Google Scholar

    [16]

    Faraggi E, Zhang T, Yang Y D, Kurgan L, Zhou Y Q 2012 J. Comput. Chem. 33 259Google Scholar

    [17]

    Heffernan R, Paliwal K, Lyons J, et al. 2015 Sci. Rep. 5 11476Google Scholar

    [18]

    Heffernan R, Yang Y D, Paliwal K, Zhou Y Q 2017 Bioinformatics 33 2842Google Scholar

    [19]

    Hanson J, Paliwal K, Litfin T, Yang Y D, Zhou Y Q, Valencia A 2019 Bioinformatics 35 2403Google Scholar

    [20]

    Mataeimoghadam F, Newton M A H, Dehzangi A, Karim A, Jayaram B, Ranganathan S, Sattar A 2020 Sci. Rep. 10 19430Google Scholar

    [21]

    Singh J, Paliwal K, Singh J, Zhou Y Q 2021 J. Chem. Inf. Model. 61 2610Google Scholar

    [22]

    Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman D J 2021 Mech. Sys. Signal Proc. 151 107398Google Scholar

    [23]

    He K M, Zhang X Y, Ren S Q, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, June 27–30, 2016 p770

    [24]

    Nam H, Kim H E 2018 arXiv: 1805.07925v3 [cs.CV

    [25]

    Clevert D A, Unterthiner T, Hochreiter S 2015 arXiv: 1511.07289v5 [cs.LG

    [26]

    Jayasiri V, Wijerathne N 2020 https://nn.labml.ai/ [2023-04-02

    [27]

    Hochreiter S, Schmidhuber J 1997 Neural Comput. 9 1735Google Scholar

    [28]

    Tieleman T, Hinton G 2012 Lecture 6.5-RMSProp: Divide the Gradient by a Running Average of its Recent Magnitude (COURSERA: Neural Networks for Machine Learning

    [29]

    Paszke A, Gross S, Massa F, et al. 2019 33rd Conference on Neural Information Processing Systems Vancouver, Canada, December 8, 2019 pp8026-8037

    [30]

    Burley S K, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow G V, et al 2021 Nucleic Acids Res. 49 D437Google Scholar

    [31]

    Fu L M, Niu B F, Zhu Z W, Wu S T, Li W Z 2012 Bioinformatics 28 3150Google Scholar

    [32]

    Altschul S F, Gish W, Miller W, Myers E W, Lipman D J 1990 J. Mol. Biol. 215 403Google Scholar

    [33]

    Rohatgi A 2022 Software available at https://automeris.io/ WebPlotDigitizer Version 4.6[software

    [34]

    Lu X J, Bussemaker H J, Olson W K 2015 Nucleic Acids Res. 43 e142Google Scholar

    [35]

    Vaswani A , Shazeer N, Parmar N, et al. 2017 arXiv: 1706. 03762v7 [cs.CL

  • 图 1  RNA分子主链和侧链7个扭转角和2个伪角的示意图

    Figure 1.  Diagram of RNA seven backbone torsion and two pseudo-torsion angles.

    图 2  DRCNN (a) 模型架构; (b) 模型中一维卷积层的原理; (c) 输出层. B, L, N, KS和Filters分别为训练中更新一次模型参数选择的序列数目、序列的长度、输入特征维度、卷积核的小大(卷积窗口一次能看到的相邻核苷酸数目)、卷积核的数目(卷积层的输出维度)

    Figure 2.  DRCNN: (a) Network architecture; (b) Conv1d layer; (c) output layer. B, L, N, KS and Filters are batch size, sequence length, the size of the input, the size of the filter (the filter can see the number of nucleotides at one time), the number of filters.

    图 3  DHLSTM (a) 模型架构; (b) HyperLSTM层; (c) 对每个核苷酸的处理单元HyperLSTMcell, 其中ht, ctht – 1, ct – 1分别是外部更大的LSTM在tt – 1时刻的隐藏态; $h'_t$, $c'_t$和$ {h}'_{t-1} $, $c'_{t - 1}$分别是更小的LSTM在tt – 1时刻的隐藏态; (d) Hypercell单元. L, B, N, Hidden, Hyper和n_z分别为序列的长度、训练中更新一次模型参数选择的序列数目、输入特征维度、大LSTM层的输出维度、内部LSTM层的输出维度和改变大LSTM层权重的Hypercell单元里线性投影的维度, PxPh为动态可训练参数, 绑定在内部超网络里, 作用在输入态xt – 1和隐藏态, 初始值为全零张量

    Figure 3.  DHLSTM: (a) Network architecture; (b) HyperLSTM layer; (c) HyperLSTMcell; ht, ct and ht – 1, ct – 1 are the states of the larger outer LSTM at time t and t – 1, respectively; $ h'_t $, $ c'_t $ and $ h'_{t-1} $, $ c'_{t-1} $ are the states of the smaller LSTM at time t and t – 1. (d) Hypercell. L, B, N, Hidden are sequence length, batch size, the size of the input, the size of the LSTM, and Hyper is the size of the smaller LSTM that alters the weights of the larger outer LSTM, n_z is the size of the feature vectors used to alter the larger LSTM weights, Px and Ph are dynamically trainable parameters, bound in the internal hypernetwork, acting on the input state xt – 1 and the hidden state, and the initial value is an all-zero tensor.

    图 4  (a) DHLSTM模型和 (b) DRCNN模型验证损失(MAE)随epoch的变化

    Figure 4.  Validation loss curve with the epoch by (a) DHLSTM and (b) DRCNN.

    图 5  DRCNN(黄色)、DHLSTM(绿色)和SPOT-RNA-1D(紫色)在测试集I (a)、测试集II (b)和测试集III (c)上单个RNA链的MAE分布图. 每个盒子显示出一组数据的最大值、最小值、中位数、上下四分位数和异常值

    Figure 5.  Distribution of MAE for individual RNA chains on test set I (a), test set II (b) and test set III (c) by DRCNN predictor (yellow), by DHLSTM (in green) and SPOT-RNA-1D (in purple). Each box shows the minimum, the maximum, the sample median, the first and third quartiles and outlier.

    图 6  测试集I扭转角的实验值(橙色)、DHLSTM预测值(黄色)和DRCNN预测值(绿色)分布图

    Figure 6.  Distribution plots of native (in orange), DHLSTM predicted (in yellow), and DRCNN predicted (in green) nine torsion angles on test set I.

    图 7  (a) DHLSTM和 (b) DRCNN分别在3个测试集(147个RNA)的9个扭转角的MAE与RNA序列长度的函数

    Figure 7.  On 147 RNAs in the three test sets, the MAE is measured as a function of the length for the nine torsion angles by (a) DHLSTM and (b) DRCNN.

    图 8  (a) DHLSTM和 (b) DRCNN分别在测试集I上扭转角的MAE的相关系数(CCs), 值越大表示两个角度越相关

    Figure 8.  Correlation coefficient (CCs) for MAE of between the nine torsion angles of test set I by (a) DHLSTM and (b) DRCNN, the larger the CC value, the more correlated between the two torsions.

    图 9  (a) DRCNN和(b) DHLSTM分别在RNA 1Y69(链9)上预测角度与decoys结构角度之间的MAE与RMSD的关系

    Figure 9.  On RNA 1Y69 (chain 9), the MAE is measured as a function of RMSD for the nine torsion angles by (a) DRCNN and (b) DHLSTM.

    表 1  训练集、验证集和3个测试集的长度和二级结构信息(百分数是数据集不同配对类型的核苷酸数目占比)

    Table 1.  Length and secondary-structure information of training, validation and test sets. The number mentioned along with the base pairing type is the percentage of total nucleotides in the region.

    数据集 序列长度区间数目 二级结构
    20—50 50—100 100—200 200—300 300—400 400—512 括号 假结 不配对
    训练集 50 179 46 1 7 1 55.10% 5.63% 39.36%
    验证集 20 10 0 0 0 0 52.19% 9.8% 38.01%
    测试集I 11 41 10 0 0 0 57.58% 2.81% 39.61%
    测试集II 8 16 6 0 0 0 58.42% 5.25% 36.33%
    测试集III 40 13 1 0 0 0 65.02% 2.67% 32.31%
    DownLoad: CSV

    表 2  DHLSTM, DRCNN和SPOT-RNA-1D在验证集和3个测试集上的MAE

    Table 2.  Performance comparison in terms of MAE on validation sets and three test sets by three models.

    数据集 7个标准扭转角 伪角
    α/(°) β/(°) γ/(°) δ/(°) ε/(°) ζ/(°) χ/(°) η/(°) θ/(°)
    DHLSTM 验证集 47.91 20.22 37.18 16.57 18.23 35.02 19.85 28.09 32.85
    测试集I 48.20 20.66 37.13 13.08 18.82 30.27 17.33 25.74 29.22
    测试集II 47.95 19.89 35.30 15.19 17.87 30.99 17.67 27.20 31.49
    测试集III 45.45 22.30 40.80 13.51 21.43 30.69 16.96 23.87 29.84
    DRCNN 验证集 44.67 19.96 35.31 13.86 22.20 31.62 19.49 24.77 30.22
    测试集I 44.84 20.74 36.27 10.51 21.48 27.53 16.39 23.12 26.34
    测试集II 43.41 19.55 35.45 12.19 22.71 28.13 17.16 24.28 28.12
    测试集III 27.14 15.81 25.20 9.73 14.51 17.98 11.58 13.67 17.77
    SPOT-
    RNA-1D [21]
    验证集 45.18 20.58 33.88 17.99 20.72 37.50 23.01 33.55 37.02
    测试集I 43.94 21.94 32.98 14.61 20.69 33.27 19.59 30.25 32.91
    测试集II 39.50 18.92 29.47 16.01 17.46 28.91 18.20 28.14 30.25
    测试集III 37.89 21.04 34.68 13.83 22.32 27.87 17.01 25.31 27.22
    DownLoad: CSV

    表 3  DHLSTM和DRCNN在测试集III不同配对类型中扭转角预测的MAE

    Table 3.  Performance according to mean absolute error by DHLSTM and DRCNN for nucleotides in different pairing type on test set III.

    配对类型 七个标准扭转角 伪角
    α/(°) β/(°) γ/(°) δ/(°) ε/(°) ζ/(°) χ/(°) η/(°) θ/(°)
    DHLSTM 括号 34.08 16.48 30.21 9.76 17.98 21.38 11.23 18.03 21.91
    假结 34.20 14.98 27.06 6.80 14.25 20.29 10.98 27.41 18.02
    环区 66.77 32.60 60.72 21.05 27.54 47.85 28.52 35.41 46.16
    DRCNN 括号 19.43 11.40 18.54 6.65 11.84 12.0 8.30 10.90 12.94
    假结 20.42 14.25 16.75 6.73 12.86 13.54 10.25 16.14 13.52
    环区 40.84 23.26 37.44 15.59 19.07 29.07 18.44 19.25 27.08
    DownLoad: CSV
    Baidu
  • [1]

    Jiao K, Hao Y Y, Wang F, et al. 2021 Biophys. Rep. 7 21Google Scholar

    [2]

    Sun S, Chen X Z, Chen J, et al. 2021 Biophys. Rep. 7 8Google Scholar

    [3]

    You Y L, Tang Z M, Lin H, Shi J L 2021 Biophys. Rep. 7 159Google Scholar

    [4]

    Zhang Y, Wang J, Xiao Y 2022 J. Mol. Biol. 434 167452Google Scholar

    [5]

    Zhang Y, Wang J, Xiao Y 2020 Comput. Struct. Biotechnol. J. 18 2416Google Scholar

    [6]

    Wang J, Wang J, Huang Y Z, Xiao Y 2019 Int. J. Mol. Sci. 20 4116Google Scholar

    [7]

    Wang J, Xiao Y 2017 Curr. Protoc. Bioinf. 57 5.9.1Google Scholar

    [8]

    Wang J, Zhao Y J, Zhu C Y, Xiao Y 2015 Nucleic Acids Res. 43 e63Google Scholar

    [9]

    Zhao Y J, Huang Y Y, Gong Z, et al. 2012 Sci. Rep. 2 734Google Scholar

    [10]

    Wang J, Mao K K, Zhao Y J, Zeng C, Xiang J J, Zhang Y, Xiao Y 2017 Nucleic Acids Res. 45 6299Google Scholar

    [11]

    Olson W K 1982 Topics in Nucleic Acid Structures (Part 2) (London: Macmillan Press) pp1–79

    [12]

    Dor O, Zhou Y Q 2007 Proteins 68 76Google Scholar

    [13]

    Xue B, Dor O, Faraggi E, Zhou Y Q 2008 Proteins 72 427Google Scholar

    [14]

    Faraggi E, Xue B, Zhou Y Q 2009 Proteins 74 847Google Scholar

    [15]

    Faraggi E, Yang Y D, Zhang S H, Zhou Y Q 2009 Structure 17 1515Google Scholar

    [16]

    Faraggi E, Zhang T, Yang Y D, Kurgan L, Zhou Y Q 2012 J. Comput. Chem. 33 259Google Scholar

    [17]

    Heffernan R, Paliwal K, Lyons J, et al. 2015 Sci. Rep. 5 11476Google Scholar

    [18]

    Heffernan R, Yang Y D, Paliwal K, Zhou Y Q 2017 Bioinformatics 33 2842Google Scholar

    [19]

    Hanson J, Paliwal K, Litfin T, Yang Y D, Zhou Y Q, Valencia A 2019 Bioinformatics 35 2403Google Scholar

    [20]

    Mataeimoghadam F, Newton M A H, Dehzangi A, Karim A, Jayaram B, Ranganathan S, Sattar A 2020 Sci. Rep. 10 19430Google Scholar

    [21]

    Singh J, Paliwal K, Singh J, Zhou Y Q 2021 J. Chem. Inf. Model. 61 2610Google Scholar

    [22]

    Kiranyaz S, Avci O, Abdeljaber O, Ince T, Gabbouj M, Inman D J 2021 Mech. Sys. Signal Proc. 151 107398Google Scholar

    [23]

    He K M, Zhang X Y, Ren S Q, Sun J 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Las Vegas, NV, USA, June 27–30, 2016 p770

    [24]

    Nam H, Kim H E 2018 arXiv: 1805.07925v3 [cs.CV

    [25]

    Clevert D A, Unterthiner T, Hochreiter S 2015 arXiv: 1511.07289v5 [cs.LG

    [26]

    Jayasiri V, Wijerathne N 2020 https://nn.labml.ai/ [2023-04-02

    [27]

    Hochreiter S, Schmidhuber J 1997 Neural Comput. 9 1735Google Scholar

    [28]

    Tieleman T, Hinton G 2012 Lecture 6.5-RMSProp: Divide the Gradient by a Running Average of its Recent Magnitude (COURSERA: Neural Networks for Machine Learning

    [29]

    Paszke A, Gross S, Massa F, et al. 2019 33rd Conference on Neural Information Processing Systems Vancouver, Canada, December 8, 2019 pp8026-8037

    [30]

    Burley S K, Bhikadiya C, Bi C, Bittrich S, Chen L, Crichlow G V, et al 2021 Nucleic Acids Res. 49 D437Google Scholar

    [31]

    Fu L M, Niu B F, Zhu Z W, Wu S T, Li W Z 2012 Bioinformatics 28 3150Google Scholar

    [32]

    Altschul S F, Gish W, Miller W, Myers E W, Lipman D J 1990 J. Mol. Biol. 215 403Google Scholar

    [33]

    Rohatgi A 2022 Software available at https://automeris.io/ WebPlotDigitizer Version 4.6[software

    [34]

    Lu X J, Bussemaker H J, Olson W K 2015 Nucleic Acids Res. 43 e142Google Scholar

    [35]

    Vaswani A , Shazeer N, Parmar N, et al. 2017 arXiv: 1706. 03762v7 [cs.CL

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian. Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network. Acta Physica Sinica, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [3] Zhang Zan, Huang Bei-Ju, Chen Hong-Da. Computational reconstruction on-chip spectrometer based on reconfigurable silicon photonic filters. Acta Physica Sinica, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [4] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [5] Zhang Pu-Du, Wang Wei-Quan, Li Zhe-Min, Zhang Zi-Xuan, Wang Ye-Chen, Zhou Hong-Yu, Yin Yan. Modeling of ion accelerated by borehole radiation pressure based on deep learning. Acta Physica Sinica, 2023, 72(18): 184103. doi: 10.7498/aps.72.20230702
    [6] Liu Dong, Cui Xin-Yue, Wang Hao-Dong, Zhang Gui-Jun. Recent advances in estimating protein structure model accuracy. Acta Physica Sinica, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [7] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [8] Li Zhi-Qiang, Tan Xiao-Yu, Duan Xin-Lei, Zhang Jing-Yi, Yang Jia-Yue. Deep learning molecular dynamics simulation on microwave high-temperature dielectric function of silicon nitride. Acta Physica Sinica, 2022, 71(24): 247803. doi: 10.7498/aps.71.20221002
    [9] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [10] Zhang Hang-Ying, Wang Xue-Qi, Wang Hua-Ying, Cao Liang-Cai. Advanced Retinex-Net image enhancement method based on value component processing. Acta Physica Sinica, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [11] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [12] Nan Hu, Ma Xiao-Jing, Zhao Hai-Bo, Tang Shao-Jie, Liu Wei-Hua, Wang Da-Wei, Jia Chun-Lin. Detection of intensity peaks in high-resolution transmission electron microscopy image based on YOLOv3. Acta Physica Sinica, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [13] Su Bo, Tao Fen, Li Ke, Du Guo-Hao, Zhang Ling, Li Zhong-Liang, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Image alignment for synchrotron radiation based X-ray nano-CT. Acta Physica Sinica, 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [14] Wang Tian-Tian, Wang Hui, Zhu Yan-Chun, Wang Li-Jia. Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder. Acta Physica Sinica, 2021, 70(22): 228701. doi: 10.7498/aps.70.20210885
    [15] Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan. A new chaotic signal based on deep learning and its application in image encryption. Acta Physica Sinica, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [16] Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang. Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [17] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [18] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [19] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [20] Lou Shu-Qin, Lu Wen-Liang, Wang Xin. A side-leakage photonic crystal fiber torsion sensor for measuring torsion angle and determining torsion direction simultaneously. Acta Physica Sinica, 2013, 62(9): 090701. doi: 10.7498/aps.62.090701
Metrics
  • Abstract views:  2488
  • PDF Downloads:  133
  • Cited By: 0
Publishing process
  • Received Date:  29 June 2023
  • Accepted Date:  02 August 2023
  • Available Online:  05 September 2023
  • Published Online:  20 December 2023

/

返回文章
返回
Baidu
map