Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder

Wang Tian-Tian Wang Hui Zhu Yan-Chun Wang Li-Jia

Citation:

Motion tracking of left myocardium in cardiac cine magnetic resonance image based on displacement flow U-Net and variational autoencoder

Wang Tian-Tian, Wang Hui, Zhu Yan-Chun, Wang Li-Jia
PDF
HTML
Get Citation
  • The high morbidity and mortality of cardiovascular diseases (CVDs) seriously affects the quality of human life. How to asses cardiac function, assist in the diagnosis and treatment of clinical CVDs and evaluate prognosis is a problem to be solved urgently. In response to this issue, based on previous work of Cardiac Cine Magnetic Resonance (CCMR) image segmentation of the left myocardium (LVM), a robust and accurate LVM motion tracking method (DispFlow_UNet_Flow) with using the displacement flow UNet (DispFlow_UNet) and biomechanics-informed variational autoencoder (VAE) is proposed in this paper. The following are the main research contents: (1) building a compressed excitation residual U-net network to accurately segment LVM, calculating the ventricular volume and myocardial mass according to the segmentation results, and then evaluating the overall cardiac function; (2) reconstructing the dense displacement field (DDF) based on the proposed motion tracking method, and obtaining the LVM dense displacement field by combining the LVM segmentation mask; (3) contrasting and evaluating the motion tracking results by using the true displacement vector field of simulated data and clinical data sets. All the results show that the tracking algorithm proposed in this paper has high precision and generalization capability.
      Corresponding author: Wang Li-Jia, lijiawangmri@163.com
    • Funds: Project supported by the Key-Area Research and Development Program of Guangdong Province (Grant Nos. 2019B20230004, 2020B010113015).
    [1]

    World Health Organization, http://origin.who.int/mediacentrse/factsheets/fs317/en/ [2019−4−17]

    [2]

    胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟 2019 中国循环学杂志 34 209

    Hu S S, Gao R L, Liu L S, Zhu M L, Wang W, Wang Y J, Wu Z S, Li H J, Gu D F, Yang Y J, Zheng Z, Chen W W 2019 Chin. Circ. J. 34 209

    [3]

    Stathogiannis K, Mor-Avi V, Rashedi N, Lang R M, Patel A R 2020 Med. Image Anal. 68 190

    [4]

    Peng P, Lekadir K, Goova A, Shao L, Petersen S E, Frangi A F 2016 Magn. Reson. Mater. Phys. , Biol. Med. 29 155

    [5]

    Frangi A F, Niessen W J, Viergever M A 2001 IEEE Trans. Med. Imaging 20 2Google Scholar

    [6]

    Young, Alistair A 2006 Curr. Cardiol. Rev. 2 271Google Scholar

    [7]

    Underwood S R, Rees R S, Savage P E, Klipstein R H, Firmin D N, Fox K M, Poole-Wilson P A, Longmore D B 1986 Br. Heart J. 56 334Google Scholar

    [8]

    Darasz K H, Underwood S R, Bayliss J, Forbat S M, Keegan J, Poole-Wilson P A, Sutton G C 2002 Int. J. Cardiovas. Imaging 18 135Google Scholar

    [9]

    Castillo E, Lima J, Bluemke D A 2003 Radiographics 23 S127Google Scholar

    [10]

    Mcveigh E R, Zerhouni E A 1991 Radiol. 180 677Google Scholar

    [11]

    Wang H, Amini A A 2012 IEEE Trans. Med. Imaging 31 487Google Scholar

    [12]

    Yu H, Sun S, Yu H, Chen X, Shi H, Huang T, Chen T 2020 arXiv: 2003.04492 v2 [cs. CV]

    [13]

    Afshin M, Ben Ayed I, Punithakumar K, Law M, Islam A, Goela A, Peters T, Li S 2014 IEEE Trans. Med. Imaging 33 481Google Scholar

    [14]

    Wang L, Clarysse P, Liu Z, Gao B, Delachartre P 2019 Med. Image Anal. 57 136Google Scholar

    [15]

    Yousefi-Banaem H, Kermani S, Asiaei S, Sanei H 2017 Comput. Biol. Med. 80 56Google Scholar

    [16]

    Tobon-Gomez C, Craene M D, Mcleod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetenakis S, Muller-Lutz A, Rasche V, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen H, Pennec X, Razavi R, Ruecjert D, Frangi A F, Rhode K 2013 Med. Image Anal. 17 632Google Scholar

    [17]

    Puyol-Anton E, Ruijsink B, Bai W, Langet H, Sinclair M, De-Craene M, Schnabel J, Piro P, King A 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) Washington, USA, April 1, 2018 p1139

    [18]

    Mcleod K, Sermesant M, Beerbaum P, Pennec X 2015 IEEE Trans. Med. Imaging 34 1562Google Scholar

    [19]

    Qin C, Bai W, Schlemper J, Petersen S, Piechnik S, Neubauer S, Rueckert D 2018 Medical Image Computing and Computer Assisted Intervention-MICCAI 2018 Granada, Spain, September 16, 2018 p472

    [20]

    Zheng Q, Delingette H, Ayache N 2019 Med. Image Anal. 56 80Google Scholar

    [21]

    Vos B D, Berendsen F F, Viergever M A , Staring M, Igum I 2017 ML-CDS 2017: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Québec City, Canada, September 10, 2017 p204

    [22]

    Qiao M, Wang Y, Guo Y, Huang L, Xia L, Tan Q 2020 Med. Phys. 47 4189Google Scholar

    [23]

    Chen P, Chen X, Chen E, Yu H, Chen T, Sun S 2020 arXiv: 2008.07579v1 [eess. IV]

    [24]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015 Munich, Germany October 5–9, 2015 p234

    [25]

    王慧 2020 硕士学位论文 (上海: 上海理工大学)

    Wang H 2020 M. S. Thesis (Shanghai: University of Shanghai for Science and Technology) (in Chinese)

    [26]

    Qiu H, Qin C, Folgoc L L, Hou B, Schlemper Jo, Ruechert D 2019 STACOM 2019: Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges Shenzhen, China, October 13, 2019 p186

    [27]

    Krebs J, Delingette H E, Mailhe B, Ayache N, Mansi T 2019 IEEE Trans. Med. Imaging 38 2165Google Scholar

    [28]

    Kingma D P, Welling M 2014 2nd International Conference on Learning Representations, ICLR 2014-Conference Track Proceedings Banff, Canada, April 14–16, 2014

    [29]

    Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng, Pheng-Ann, Cetin I, Lekadir K, Camara O, Ballester M 2018 IEEE Trans. Med. Imaging 37 2514Google Scholar

    [30]

    Duchateau N, Sermesant M, Delingette H, Ayache N 2017 IEEE Trans. Med. Imaging 37 755Google Scholar

    [31]

    Rueckert D, Sonoda L I, Hayes C, Hill D L G, Leach M O, Hawkes D J 1999 IEEE Trans. Med. Imaging 18 712Google Scholar

  • 图 1  基于SSFP序列的CCMR图像

    Figure 1.  CCMR images based on SSFP sequence .

    图 2  压缩激励残差U-net网络结构

    Figure 2.  Squeeze-and-excitation residual U-shaped network.

    图 3  SERU-net左心肌分割结果

    Figure 3.  Results of left myocardium segmentation by SERU-net.

    图 4  DispFlow_UNet_VAE运动追踪框架

    Figure 4.  The motion tracking architecture of DispFlow_UNet_VAE.

    图 5  DispFlow_UNet网络框架

    Figure 5.  The network architecture of DispFlow_UNet.

    图 6  VAE网络

    Figure 6.  The network architecture of VAE.

    图 7  ED (左)与ES (右)的原始图像及金标准

    Figure 7.  Original image and its ground truth of ED (left) and ES (right).

    图 8  训练集(蓝)与验证集(橙)的损失曲线

    Figure 8.  Loss curves of training set (blue) and verification set (orange).

    图 9  利用预测位移场将ES扭曲至ED的示例图

    Figure 9.  Example diagram of warping ES to ED using the predicted displacement field.

    图 10  不同病例类型预测的位移图

    Figure 10.  Predicted displacement fields of different case types.

    图 11  本文方法与其他方法的DM (a)和MCD (b)指标箱形图

    Figure 11.  Box chart of DM (a) and MCD (b) indicators of the method presented in this paper and other methods.

    图 12  预测位移矢量与位移真值矢量对比

    Figure 12.  Comparison between the predicted displacement field (left) and the true displacement field (right).

    图 13  预测位移矢量(红色)与位移真值矢量(绿色)对比

    Figure 13.  Predicted displacement field (left) and the true displacement field (right).

    表 1  实验数据

    Table 1.  The experimental data.

    数据集数据量相位数层数磁共振扫描仪
    ACDC10012—359—101.5 T Siemens Area
    3.0 T Siemens
    Trio Tim
    临床数据7520—286—101.5 T GE
    合成MRI数据15309—14
    DownLoad: CSV

    表 2  ACDC数据集分配情况

    Table 2.  ACDC data set allocation.

    n重交叉验证(Foldn)Fold1Fold2Fold3Fold4Fold5
    内部数据data_ intHCM MINFNOR RVADCM MINFNOR RVADCM HCMNOR RVADCM HCMMINF RVADCM HCMMINF NOR
    外部数据 data_ extDCMHCMMINFNOR RVA
    训练集data_int×0.8
    验证集data_int×0.1
    预测集data_int×0.1 + data_ext×1
    DownLoad: CSV

    表 3  左心室功能指参数 (均值±标准差)

    Table 3.  Left ventricular function parameters (Mean ± standard deviation).

    EDV
    /mL
    ESV/mLSV
    /mL
    EF
    /%
    ED_LVM/L·min–1ES_LVM
    /g
    97.94
    ±34.73
    38.133
    ±21.30
    61.39
    ±24.43
    62.90
    ±15.3
    88.23
    ±35.23
    84.13±33.22
    DownLoad: CSV

    表 4  不同追踪方法Dice系数、MCD和HD的对比

    Table 4.  Comparison of Dice coefficients, MCD and HD of different tracking methods.

    方法DiceMCDHD
    LVCLVMLVCLVMLVCLVM
    FFD0.920 (0.029)0.797 (0.034)1.256 (0.387)1.192 (0.392)3.431 (0.688)3.439 (1.181)
    DL+L20.912 (0.037)0.800 (0.057)1.340 (0.428)1.171 (0.286)3.699 (1.099)3.285 (0.717)
    DispFlow_UNet0.925 (0.024)0.818 (0.054)1.203 (0.329)0.971 (0.120)3.347 (0.785)2.906 (0.358)
    DispFlow_UNet_VAE0.946 (0.016)0.843 (0.031)0.924 (0.279)0.931 (0.239)2.991 (0.960)3.178 (0.744)
    DownLoad: CSV

    表 5  临床数据集上的模型泛化性能

    Table 5.  Model generalization performance on clinical datasets.

    数据集DiceMCD
    LVCLVMRVCLVCLVMRVC
    ACDC0.946 (0.016)0.843 (0.031)0.876 (0.078)0.924 (0.279)0.931 (0.239)1.348 (0.858)
    临床数据0.882 (0.022)0.836 (0.059)0.850 (0.093)1.874 (0.383)1.079 (0.262)1.427 (0.579)
    DownLoad: CSV
    Baidu
  • [1]

    World Health Organization, http://origin.who.int/mediacentrse/factsheets/fs317/en/ [2019−4−17]

    [2]

    胡盛寿, 高润霖, 刘力生, 朱曼璐, 王文, 王拥军, 吴兆苏, 李惠君, 顾东风, 杨跃进, 郑哲, 陈伟伟 2019 中国循环学杂志 34 209

    Hu S S, Gao R L, Liu L S, Zhu M L, Wang W, Wang Y J, Wu Z S, Li H J, Gu D F, Yang Y J, Zheng Z, Chen W W 2019 Chin. Circ. J. 34 209

    [3]

    Stathogiannis K, Mor-Avi V, Rashedi N, Lang R M, Patel A R 2020 Med. Image Anal. 68 190

    [4]

    Peng P, Lekadir K, Goova A, Shao L, Petersen S E, Frangi A F 2016 Magn. Reson. Mater. Phys. , Biol. Med. 29 155

    [5]

    Frangi A F, Niessen W J, Viergever M A 2001 IEEE Trans. Med. Imaging 20 2Google Scholar

    [6]

    Young, Alistair A 2006 Curr. Cardiol. Rev. 2 271Google Scholar

    [7]

    Underwood S R, Rees R S, Savage P E, Klipstein R H, Firmin D N, Fox K M, Poole-Wilson P A, Longmore D B 1986 Br. Heart J. 56 334Google Scholar

    [8]

    Darasz K H, Underwood S R, Bayliss J, Forbat S M, Keegan J, Poole-Wilson P A, Sutton G C 2002 Int. J. Cardiovas. Imaging 18 135Google Scholar

    [9]

    Castillo E, Lima J, Bluemke D A 2003 Radiographics 23 S127Google Scholar

    [10]

    Mcveigh E R, Zerhouni E A 1991 Radiol. 180 677Google Scholar

    [11]

    Wang H, Amini A A 2012 IEEE Trans. Med. Imaging 31 487Google Scholar

    [12]

    Yu H, Sun S, Yu H, Chen X, Shi H, Huang T, Chen T 2020 arXiv: 2003.04492 v2 [cs. CV]

    [13]

    Afshin M, Ben Ayed I, Punithakumar K, Law M, Islam A, Goela A, Peters T, Li S 2014 IEEE Trans. Med. Imaging 33 481Google Scholar

    [14]

    Wang L, Clarysse P, Liu Z, Gao B, Delachartre P 2019 Med. Image Anal. 57 136Google Scholar

    [15]

    Yousefi-Banaem H, Kermani S, Asiaei S, Sanei H 2017 Comput. Biol. Med. 80 56Google Scholar

    [16]

    Tobon-Gomez C, Craene M D, Mcleod K, Tautz L, Shi W, Hennemuth A, Prakosa A, Wang H, Carr-White G, Kapetenakis S, Muller-Lutz A, Rasche V, Friman O, Mansi T, Sermesant M, Zhuang X, Ourselin S, Peitgen H, Pennec X, Razavi R, Ruecjert D, Frangi A F, Rhode K 2013 Med. Image Anal. 17 632Google Scholar

    [17]

    Puyol-Anton E, Ruijsink B, Bai W, Langet H, Sinclair M, De-Craene M, Schnabel J, Piro P, King A 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018) Washington, USA, April 1, 2018 p1139

    [18]

    Mcleod K, Sermesant M, Beerbaum P, Pennec X 2015 IEEE Trans. Med. Imaging 34 1562Google Scholar

    [19]

    Qin C, Bai W, Schlemper J, Petersen S, Piechnik S, Neubauer S, Rueckert D 2018 Medical Image Computing and Computer Assisted Intervention-MICCAI 2018 Granada, Spain, September 16, 2018 p472

    [20]

    Zheng Q, Delingette H, Ayache N 2019 Med. Image Anal. 56 80Google Scholar

    [21]

    Vos B D, Berendsen F F, Viergever M A , Staring M, Igum I 2017 ML-CDS 2017: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support Québec City, Canada, September 10, 2017 p204

    [22]

    Qiao M, Wang Y, Guo Y, Huang L, Xia L, Tan Q 2020 Med. Phys. 47 4189Google Scholar

    [23]

    Chen P, Chen X, Chen E, Yu H, Chen T, Sun S 2020 arXiv: 2008.07579v1 [eess. IV]

    [24]

    Ronneberger O, Fischer P, Brox T 2015 Medical Image Computing and Computer-Assisted Intervention-MICCAI 2015 Munich, Germany October 5–9, 2015 p234

    [25]

    王慧 2020 硕士学位论文 (上海: 上海理工大学)

    Wang H 2020 M. S. Thesis (Shanghai: University of Shanghai for Science and Technology) (in Chinese)

    [26]

    Qiu H, Qin C, Folgoc L L, Hou B, Schlemper Jo, Ruechert D 2019 STACOM 2019: Statistical Atlases and Computational Models of the Heart. Multi-Sequence CMR Segmentation, CRT-EPiggy and LV Full Quantification Challenges Shenzhen, China, October 13, 2019 p186

    [27]

    Krebs J, Delingette H E, Mailhe B, Ayache N, Mansi T 2019 IEEE Trans. Med. Imaging 38 2165Google Scholar

    [28]

    Kingma D P, Welling M 2014 2nd International Conference on Learning Representations, ICLR 2014-Conference Track Proceedings Banff, Canada, April 14–16, 2014

    [29]

    Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng, Pheng-Ann, Cetin I, Lekadir K, Camara O, Ballester M 2018 IEEE Trans. Med. Imaging 37 2514Google Scholar

    [30]

    Duchateau N, Sermesant M, Delingette H, Ayache N 2017 IEEE Trans. Med. Imaging 37 755Google Scholar

    [31]

    Rueckert D, Sonoda L I, Hayes C, Hill D L G, Leach M O, Hawkes D J 1999 IEEE Trans. Med. Imaging 18 712Google Scholar

  • [1] Huang Yu-Hang, Chen Li-Xiang. Fractional Fourier transform imaging based on untrained neural networks. Acta Physica Sinica, 2024, 73(9): 094201. doi: 10.7498/aps.73.20240050
    [2] Shi Yue, Ou Pan, Zheng Ming, Tai Han-Xu, Wang Yu-Hong, Duan Ruo-Nan, Wu Jian. Artifact noise suppression of particle-field computed tomography based on lightweight residual and enhanced convergence neural network. Acta Physica Sinica, 2024, 73(10): 104202. doi: 10.7498/aps.73.20231902
    [3] Zhang Zan, Huang Bei-Ju, Chen Hong-Da. Computational reconstruction on-chip spectrometer based on reconfigurable silicon photonic filters. Acta Physica Sinica, 2024, 73(14): 140701. doi: 10.7498/aps.73.20240224
    [4] Liu Hong-Jiang, Liu Yi-Fei, Gu Fu-Xing. Automatic fabrication system of optical micro-nanofiber based on deep learning. Acta Physica Sinica, 2024, 73(10): 104207. doi: 10.7498/aps.73.20240171
    [5] Zhang Pu-Du, Wang Wei-Quan, Li Zhe-Min, Zhang Zi-Xuan, Wang Ye-Chen, Zhou Hong-Yu, Yin Yan. Modeling of ion accelerated by borehole radiation pressure based on deep learning. Acta Physica Sinica, 2023, 72(18): 184103. doi: 10.7498/aps.72.20230702
    [6] Liu Dong, Cui Xin-Yue, Wang Hao-Dong, Zhang Gui-Jun. Recent advances in estimating protein structure model accuracy. Acta Physica Sinica, 2023, 72(24): 248702. doi: 10.7498/aps.72.20231071
    [7] Ou Xiu-Juan, Xiao Yi. Deep learning methods of predicting RNA torsion angle. Acta Physica Sinica, 2023, 72(24): 248703. doi: 10.7498/aps.72.20231069
    [8] Sun Tao, Yuan Jian-Mei. Prediction of band gap of transition metal sulfide with Janus structure by deep learning atomic feature representation method. Acta Physica Sinica, 2023, 72(2): 028901. doi: 10.7498/aps.72.20221374
    [9] Zhan Qing-Liang, Bai Chun-Jin, Ge Yao-Jun. Deep learning representation of flow time history for complex flow field. Acta Physica Sinica, 2022, 71(22): 224701. doi: 10.7498/aps.71.20221314
    [10] Zhu Qi, Xu Duo, Zhang Yuan-Jun, Li Yu-Juan, Wang Wen, Zhang Hai-Yan. Ultrasonic detection of white etching defect based on convolution neural network. Acta Physica Sinica, 2022, 71(24): 244301. doi: 10.7498/aps.71.20221504
    [11] Zhang Hang-Ying, Wang Xue-Qi, Wang Hua-Ying, Cao Liang-Cai. Advanced Retinex-Net image enhancement method based on value component processing. Acta Physica Sinica, 2022, 71(11): 110701. doi: 10.7498/aps.71.20220099
    [12] Zhan Qing-Liang, Ge Yao-Jun, Bai Chun-Jin. Flow feature extraction models based on deep learning. Acta Physica Sinica, 2022, 71(7): 074701. doi: 10.7498/aps.71.20211373
    [13] Nan Hu, Ma Xiao-Jing, Zhao Hai-Bo, Tang Shao-Jie, Liu Wei-Hua, Wang Da-Wei, Jia Chun-Lin. Detection of intensity peaks in high-resolution transmission electron microscopy image based on YOLOv3. Acta Physica Sinica, 2021, 70(7): 076803. doi: 10.7498/aps.70.20201502
    [14] Su Bo, Tao Fen, Li Ke, Du Guo-Hao, Zhang Ling, Li Zhong-Liang, Deng Biao, Xie Hong-Lan, Xiao Ti-Qiao. Image alignment for synchrotron radiation based X-ray nano-CT. Acta Physica Sinica, 2021, 70(16): 160704. doi: 10.7498/aps.70.20210156
    [15] Zhao Zhi-Peng, Zhou Shuang, Wang Xing-Yuan. A new chaotic signal based on deep learning and its application in image encryption. Acta Physica Sinica, 2021, 70(23): 230502. doi: 10.7498/aps.70.20210561
    [16] Xu Zhao, Zhou Xin, Bai Xing, Li Cong, Chen Jie, Ni Yang. Attacking asymmetric cryptosystem based on phase truncated Fourier fransform by deep learning. Acta Physica Sinica, 2021, 70(14): 144202. doi: 10.7498/aps.70.20202075
    [17] Zhang Yao, Zhang Yun-Bo, Chen Li. Deep-learning-assisted micro impurity detection on an optical surface. Acta Physica Sinica, 2021, 70(16): 168702. doi: 10.7498/aps.70.20210403
    [18] Chen Wei, Guo Yuan, Jing Shi-Wei. General image encryption algorithm based on deep learning compressed sensing and compound chaotic system. Acta Physica Sinica, 2020, 69(24): 240502. doi: 10.7498/aps.69.20201019
    [19] Lang Li-Ying, Lu Jia-Lei, Yu Na-Na, Xi Si-Xing, Wang Xue-Guang, Zhang Lei, Jiao Xiao-Xue. In depth learning based method of denoising joint transform correlator optical image encryption system. Acta Physica Sinica, 2020, 69(24): 244204. doi: 10.7498/aps.69.20200805
    [20] Li Shao-He, Li Jiu-Sheng, Sun Jian-Zhong. Terahertz frequency coding metasurface. Acta Physica Sinica, 2019, 68(10): 104203. doi: 10.7498/aps.68.20190032
Metrics
  • Abstract views:  4776
  • PDF Downloads:  63
  • Cited By: 0
Publishing process
  • Received Date:  11 May 2021
  • Accepted Date:  07 July 2021
  • Available Online:  16 August 2021
  • Published Online:  20 November 2021

/

返回文章
返回
Baidu
map