搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度

贺丽 余增强

引用本文:
Citation:

自旋-轨道耦合作用下玻色-爱因斯坦凝聚在量子相变附近的朗道临界速度

贺丽, 余增强

Landau critical velocity of spin-orbit-coupled Bose-Einstein condensate across quantum phase transition

He Li, Yu Zeng-Qiang
PDF
导出引用
  • 各向异性超流体中的朗道临界速度并非简单地由运动方向的元激发能谱决定.在自旋-轨道耦合作用下的双分量玻色-爱因斯坦凝聚中,当系统跨过平面波相与零动量相之间的量子相变时,尽管超流声速连续变化,但垂直于自旋-轨道耦合方向的朗道临界速度会出现跳变,跳变幅度随自旋相互作用强度单调增加.根据线性响应理论,计算了凝聚体中运动杂质在不同速度下的能量耗散率,提出可以通过能量耗散观测临界速度在量子相变处的不连续性.
    An impurity immersed in a superfluid can move without friction when its velocity is below a critical value. This phenomenon can be explained by the famous Landau criterion, according to which, the critical velocity is determined by the elementary excitation spectrum of the superfluid. Landau critical velocity has been measured in the isotropic superfluid, such as the liquid He-Ⅱ and the Bose-Einstein condensates of dilute atomic gases, where the onset of dissipation is due to the creation of roton and phonon, respectively. The recent realization of synthetic spin-orbit coupling in quantum gas opens up possibilities for the study of novel superfluidity with ultracold atoms. To date, a specific type of spin-orbit coupling, which is generated by a pair of Raman laser beams, has been achieved in a Bose-Einstein condensate of 87Rb experimentally. Remarkably, the excitation spectrum of this system is anisotropic and can be feasibly tuned by the external laser field. While the anisotropic dynamics has been observed experimentally, the critical velocity has not been measured so far. It is a conventional wisdom that in an anisotropic superfluid, the critical velocity is determined by the excitation spectrum in the moving direction of the impurity. However, this is not always the case. In this work, we investigate the motion of a point-like impurity in a spin-orbit-coupled condensate with the spin-dependent interatomic interaction. In the vicinity of the quantum phase transition between the plane-wave (PW) phase and the zero-momentum (ZM) phase, the onset of the dissipation is due to the emission of a phonon, and the Landau critical velocity vc depends on the anisotropic sound velocity. While the sound velocity varies smoothly across the PW-ZM phase transition, the critical velocity in the direction perpendicular to the axis of spin-orbit coupling exhibits a sudden jump at the phase boundary. The value of vc on the PW phase side of the transition is generally smaller than the one on the ZM phase side, and the jump amplitude of vc is an increasing function of the spin-dependent interaction strength. Beyond the critical velocity, the energy dissipation rate of the impurity is explicitly calculated via a perturbation approach. The discontinuity of vc at the phase boundary can be clearly seen from the dissipation curves, which can be measured through the heating of the condensate. Our prediction can be tested in the current experiments with ultracold atoms.
      通信作者: 贺丽, heli@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号:11674202)和山西省应用基础研究项目(批准号:201601D011014)资助的课题.
      Corresponding author: He Li, heli@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11674202), and the Applied and Fundamental Research Program of Shanxi Province, China (Grant No. 201601D011014).
    [1]

    Pitaevskii L P, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (New York: Oxford University Press) pp65-67

    [2]

    Yu Z Q 2017 Phys. Rev. A 95 033618

    [3]

    Goldman N, Juzeliūnas G, hberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401

    [4]

    Zhai H 2015 Rep. Prog. Phys. 78 026001

    [5]

    Lin Y J, Jimnez-Garca K, Spielman I B 2011 Nature 471 83

    [6]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [7]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302

    [8]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [9]

    Khamehchi M A, Zhang Y, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90 063624

    [10]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301

    [11]

    Ozawa T, Pitaevskii L P, Stringari S 2013 Phys. Rev. A 87 063610

    [12]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007

    [13]

    Wu S, Ke Y, Huang J, Lee C 2017 Phys. Rev. A 95 063606

    [14]

    Zhang Y C, Yu Z Q, Ng T K, Zhang S, Pitaevskii L, Stringari S 2016 Phys. Rev. A 94 033635

    [15]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403

    [16]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301

    [17]

    Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86 063621

    [18]

    Yu Z Q 2012 Report of Postdoc Research (Beijing: Tsinghua University) (in Chinese) [余增强 2012 博士后研究报告 (北京: 清华大学)]

    [19]

    Pitaevskii L P, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (New York: Oxford University Press) pp89-91

    [20]

    He L, Yu Z Q 2016 Acta Phys. Sin. 13 131101 (in Chinese) [贺丽, 余增强 2016 13 131101]

  • [1]

    Pitaevskii L P, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (New York: Oxford University Press) pp65-67

    [2]

    Yu Z Q 2017 Phys. Rev. A 95 033618

    [3]

    Goldman N, Juzeliūnas G, hberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401

    [4]

    Zhai H 2015 Rep. Prog. Phys. 78 026001

    [5]

    Lin Y J, Jimnez-Garca K, Spielman I B 2011 Nature 471 83

    [6]

    Wang P, Yu Z Q, Fu Z, Miao J, Huang L, Chai S, Zhai H, Zhang J 2012 Phys. Rev. Lett. 109 095301

    [7]

    Cheuk L W, Sommer A T, Hadzibabic Z, Yefsah T, Bakr W S, Zwierlein M W 2012 Phys. Rev. Lett. 109 095302

    [8]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan B, Pan G S, Zhao B, Deng Y J, Zhai H, Chen S, Pan J W 2012 Phys. Rev. Lett. 109 115301

    [9]

    Khamehchi M A, Zhang Y, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90 063624

    [10]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301

    [11]

    Ozawa T, Pitaevskii L P, Stringari S 2013 Phys. Rev. A 87 063610

    [12]

    Zheng W, Yu Z Q, Cui X, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007

    [13]

    Wu S, Ke Y, Huang J, Lee C 2017 Phys. Rev. A 95 063606

    [14]

    Zhang Y C, Yu Z Q, Ng T K, Zhang S, Pitaevskii L, Stringari S 2016 Phys. Rev. A 94 033635

    [15]

    Ho T L, Zhang S 2011 Phys. Rev. Lett. 107 150403

    [16]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301

    [17]

    Martone G I, Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. A 86 063621

    [18]

    Yu Z Q 2012 Report of Postdoc Research (Beijing: Tsinghua University) (in Chinese) [余增强 2012 博士后研究报告 (北京: 清华大学)]

    [19]

    Pitaevskii L P, Stringari S 2016 Bose-Einstein Condensation and Superfluidity (New York: Oxford University Press) pp89-91

    [20]

    He L, Yu Z Q 2016 Acta Phys. Sin. 13 131101 (in Chinese) [贺丽, 余增强 2016 13 131101]

  • [1] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学.  , 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] 邱旭, 王林雪, 陈光平, 胡爱元, 文林. 自旋张量-动量耦合玻色-爱因斯坦凝聚的动力学性质.  , 2023, 72(18): 180304. doi: 10.7498/aps.72.20231076
    [4] 袁家望, 陈立, 张云波. 自旋-轨道耦合玻色爱因斯坦凝聚中多能级绝热消除理论.  , 2023, 72(21): 216701. doi: 10.7498/aps.72.20231052
    [5] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [6] 赵珊珊, 贺丽, 余增强. 偶极玻色-爱因斯坦凝聚体中的各向异性耗散.  , 2020, 69(8): 080302. doi: 10.7498/aps.69.20200025
    [7] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [8] 赵军亚, 李晨旭, 马晓栋. 碟形玻色-爱因斯坦凝聚体中(0, 0, 2)剪刀模的朗道阻尼和频移.  , 2019, 68(23): 230304. doi: 10.7498/aps.68.20190661
    [9] 文林, 梁毅, 周晶, 余鹏, 夏雷, 牛连斌, 张晓斐. 线性塞曼劈裂对自旋-轨道耦合玻色-爱因斯坦凝聚体中亮孤子动力学的影响.  , 2019, 68(8): 080301. doi: 10.7498/aps.68.20182013
    [10] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究.  , 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [11] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿.  , 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [12] 柴兆亮, 周昱, 马晓栋. 雪茄形铷原子玻色-爱因斯坦凝聚中单极子模的朗道阻尼和频移.  , 2013, 62(13): 130307. doi: 10.7498/aps.62.130307
    [13] 李志, 王建忠. 自旋-轨道耦合玻色-爱因斯坦凝聚势垒散射特性的研究.  , 2013, 62(10): 100306. doi: 10.7498/aps.62.100306
    [14] 赵文垒, 豆福全, 王建忠. 玻色-爱因斯坦凝聚体中非线性相互作用对量子共振棘流的影响.  , 2012, 61(22): 220503. doi: 10.7498/aps.61.220503
    [15] 严冬, 宋立军, 陈殿伟. 两分量玻色-爱因斯坦凝聚系统的自旋压缩.  , 2009, 58(6): 3679-3684. doi: 10.7498/aps.58.3679
    [16] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [17] 王志霞, 张喜和, 沈 柯. 玻色-爱因斯坦凝聚中的混沌反控制.  , 2008, 57(12): 7586-7590. doi: 10.7498/aps.57.7586
    [18] 李菊萍, 谭 磊, 臧小飞, 杨 科. 偶极旋量玻色-爱因斯坦凝聚体在外场中的自旋混合动力学.  , 2008, 57(12): 7467-7476. doi: 10.7498/aps.57.7467
    [19] 王冠芳, 刘 红. 扫描磁场中玻色-爱因斯坦凝聚体系的奇异自旋隧穿.  , 2008, 57(2): 667-673. doi: 10.7498/aps.57.667
    [20] 余学才, 莫 影. 势场中玻色-爱因斯坦凝聚的临界温度.  , 2004, 53(12): 4075-4079. doi: 10.7498/aps.53.4075
计量
  • 文章访问数:  6700
  • PDF下载量:  219
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-07
  • 修回日期:  2017-08-22
  • 刊出日期:  2017-11-05

/

返回文章
返回
Baidu
map