Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Energy loss of surface plasmon polaritons on Ag nanowire waveguide

Wang Wen-Hui Zhang Nao

Citation:

Energy loss of surface plasmon polaritons on Ag nanowire waveguide

Wang Wen-Hui, Zhang Nao
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • Metal nanostructures can support surface plasmon polaritons (SPPs) propagating beyond diffraction limit, which enables the miniaturizing of optical devices and the integrating of on-chip photonic and electronic circuits. Various surface plasmon based optical components have already been developed such as plasmonic routers, detectors, logic gates, etc. However, the high energy losses associated with SPPs' propagation have largely hampered their applications in nanophotonic devices and circuits. Developing the methods of effectively reducing energy loss is significant in this field. In this review, we mainly focus on the energy losses when SPPs propagate in Ag nanowires (NWs). Researches on energy loss mechanism, measurement approaches and methods of reducing energy loss have been reviewed. Owing to their good morphology and high crystallinity as well as low loss in visible spectrum, chemically synthesized Ag NWs are a promising candidate for plasmonic waveguides. The energy losses mainly arise from inherent Ohmic damping, scattering process, leaky radiation and absorption of substrate. These processes can be influenced by excitation wavelength, the geometry of NW and the dielectric environment, especially the effect of substrate, which is discussed in the review. Longer excitation wavelength and larger NW diameter can induce decreased mode confinements and smaller Ohmic loss. The experimental methods to measure the energy loss have been summarized. Researches on reducing energy loss have been reviewed including applying dielectric layer or graphene between NW and substrate, replacing commonly used substrate with a dielectric multilayer substrate, introducing gain materials, and forming hybrid waveguides by using the semiconductor or dielectric NW. Specifically, the leaky radiation can be prevented when an appropriate dielectric layer is placed between NW and substrate, and the mode confinement can be reduced which leads to decreased Ohmic loss. The gain materials can be used to compensate for the energy loss during propagation. Compared with metal waveguides, semiconductor or dielectric NWs suffer lower energy losses while decreased field confinement. Then the hybrid waveguides constructed by metal and dielectric NWs can combine their advantages, which possesses reduced propagation loss. In addition, the plasmon modes in NWs in a homogeneous medium and a substrate are briefly discussed respectively, followed by the introduction to fundamental properties of SPPs propagation. Finally, perspectives of the future development of reducing energy loss are given. The researches on reducing energy loss are crucial for designing and fabricating the nanophotonic devices and integrated optical circuits.
    [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [4]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [5]

    Atwater H A, Maier S, Polman A, Dionne J A, Sweatlock L 2005 MRS Bull. 30 385

    [6]

    Economou E N 1969 Phys. Rev. 182 539

    [7]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186

    [8]

    Maier S A, Friedman M D, Barclay P E, Painter O 2005 Appl. Phys. Lett. 86 071103

    [9]

    Qu D X, Grischkowsky D 2004 Phys. Rev. Lett. 93 196804

    [10]

    Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51

    [11]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [12]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [13]

    Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263

    [14]

    Krenn J R, Weeber J C 2004 Philos. Trans. R. Soc. London Ser. A 362 739

    [15]

    Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A 2006 Nano Lett. 6 1822

    [16]

    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472

    [17]

    Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383

    [18]

    Li Z, Bao K, Fang Y, Huang Y, Nordlander P, Xu H 2010 Nano Lett. 10 1831

    [19]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801

    [20]

    Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J, Xu H 2011 Nano Lett. 11 471

    [21]

    Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560

    [22]

    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950

    [23]

    Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387

    [24]

    Wu X, Xiao Y, Meng C, Zhang X, Yu S, Wang Y, Yang C, Guo X, Ning C Z, Tong L 2013 Nano Lett. 13 5654

    [25]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N d L, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475

    [26]

    Goodfellow K M, Chakraborty C, Beams R, Novotny L, Vamiyakas A N 2015 Nano Lett. 15 5477

    [27]

    Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882

    [28]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801

    [29]

    Wang Y, Ma Y, Guo X, Tong L 2012 Opt. Express 20 19006

    [30]

    Zhang S H, Jiang Z Y, Xie Z X, Xu X, Huang R B, Zheng L S 2005 J. Phys. Chem. B 109 9416

    [31]

    Staleva H, Skrabalak S E, Carey C R, Kosel T, Xia Y, Hartland G V 2009 Phys. Chem. Chem. Phys. 11 5889

    [32]

    Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J 11 454

    [33]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60

    [34]

    Sun Y G, Xia Y N 2002 Adv. Mater. 14 833

    [35]

    Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [36]

    Pan D, Wei H, Jia Z, Xu H 2014 Sci. Rep. 4 4993

    [37]

    Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803

    [38]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [39]

    Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402

    [40]

    Zhang S, Xu H 2012 ACS Nano 6 8128

    [41]

    Wei H, Pan D, Xu H 2015 Nanoscale 7 19053

    [42]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [43]

    Oulton R F, Bartal G, Pile D F P, Zhang X 2008 New J. Phys. 10 105018

    [44]

    Song Y, Yan M, Yang Q, Tong L M, Qiu M 2011 Opt. Commun. 284 480

    [45]

    Jia Z, Wei H, Pan D, Xu H 2016 Nanoscale 8 20118

    [46]

    Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q 2010 Opt. Lett. 35 1160

    [47]

    Hua J, Wu F, Fan F, Wang W, Xu Z, Li F 2016 J. Phys.: Condens. Matter 28 254005

    [48]

    Kusar P, Gruber C, Hohenau A, Krenn J R 2012 Nano Lett. 12 661

    [49]

    Wu F, Wang W, Hua J, Xu Z, Li F 2016 Sci. Rep. 6 37512

    [50]

    Hua J, Wu F, Xu Z, Wang W 2016 Sci. Rep. 6 34418

    [51]

    Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560

    [52]

    Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H 2013 Sci. Rep. 3 1967

    [53]

    Wang W, Yang Q, Fan F, Xu H, Wang Z L 2011 Nano Lett. 11 1603

    [54]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [55]

    Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494

    [56]

    Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys. Lett. 60 663

    [57]

    Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B 2009 Nano Lett. 9 2553

    [58]

    Dorfmueller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372

    [59]

    Li X, Guo X, Wang D, Tong L 2014 Opt. Commun. 323 119

    [60]

    Wang W, Zhou W, Fu T, Wu F, Zhang N, Li Q, Xu Z, Liu W 2018 Nano Energy 48 197

    [61]

    Meng X, Zhu W, Li H, Zhai C, Zhang W 2018 Opt. Commun. 423 152

    [62]

    Zhang D, Xiang Y, Chen J, Cheng J, Zhu L, Wang R, Zou G, Wang P, Ming H, Rosenfeld M, Badugu R, Lakowicz J R 2018 Nano Lett. 18 1152

    [63]

    Paul A, Zhen Y R, Wang Y, Chang W S, Xia Y, Nordlander P, Link S 2014 Nano Lett. 14 3628

    [64]

    Li Y J, Xiong X, Zou C L, Ren X F, Zhao Y S 2015 Small 11 3728

    [65]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515

    [66]

    Li Y J, Yan Y, Zhang C, Zhao Y S, Yao J 2013 Adv. Mater. 25 2784

    [67]

    Yan Y, Zhang C, Zheng J Y, Yao J, Zhao Y S 2012 Adv. Mater. 24 5681

  • [1]

    Barnes W L, Dereux A, Ebbesen T W 2003 Nature 424 824

    [2]

    Pacifici D, Lezec H J, Atwater H A 2007 Nat. Photon. 1 402

    [3]

    Zia R, Schuller J A, Chandran A, Brongersma M L 2006 Mater. Today 9 20

    [4]

    Gramotnev D K, Bozhevolnyi S I 2010 Nat. Photon. 4 83

    [5]

    Atwater H A, Maier S, Polman A, Dionne J A, Sweatlock L 2005 MRS Bull. 30 385

    [6]

    Economou E N 1969 Phys. Rev. 182 539

    [7]

    Burke J J, Stegeman G I, Tamir T 1986 Phys. Rev. B 33 5186

    [8]

    Maier S A, Friedman M D, Barclay P E, Painter O 2005 Appl. Phys. Lett. 86 071103

    [9]

    Qu D X, Grischkowsky D 2004 Phys. Rev. Lett. 93 196804

    [10]

    Lamprecht B, Krenn J R, Schider G, Ditlbacher H, Salerno M, Felidj N, Leitner A, Aussenegg F R, Weeber J C 2001 Appl. Phys. Lett. 79 51

    [11]

    Pile D F P, Gramotnev D K 2004 Opt. Lett. 29 1069

    [12]

    Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen T W 2006 Nature 440 508

    [13]

    Graff A, Wagner D, Ditlbacher H, Kreibig U 2005 Eur. Phys. J. D 34 263

    [14]

    Krenn J R, Weeber J C 2004 Philos. Trans. R. Soc. London Ser. A 362 739

    [15]

    Sanders A W, Routenberg D A, Wiley B J, Xia Y, Dufresne E R, Reed M A 2006 Nano Lett. 6 1822

    [16]

    Wild B, Cao L, Sun Y, Khanal B P, Zubarev E R, Gray S K, Scherer N F, Pelton M 2012 ACS Nano 6 472

    [17]

    Li Z, Hao F, Huang Y, Fang Y, Nordlander P, Xu H 2009 Nano Lett. 9 4383

    [18]

    Li Z, Bao K, Fang Y, Huang Y, Nordlander P, Xu H 2010 Nano Lett. 10 1831

    [19]

    Zhang S, Wei H, Bao K, Hakanson U, Halas N J, Nordlander P, Xu H 2011 Phys. Rev. Lett. 107 096801

    [20]

    Wei H, Li Z, Tian X, Wang Z, Cong F, Liu N, Zhang S, Nordlander P, Halas N J, Xu H 2011 Nano Lett. 11 471

    [21]

    Wei H, Tian X, Pan D, Chen L, Jia Z, Xu H 2015 Nano Lett. 15 560

    [22]

    Fang Y, Li Z, Huang Y, Zhang S, Nordlander P, Halas N J, Xu H 2010 Nano Lett. 10 1950

    [23]

    Wei H, Wang Z, Tian X, Kall M, Xu H 2011 Nat. Commun. 2 387

    [24]

    Wu X, Xiao Y, Meng C, Zhang X, Yu S, Wang Y, Yang C, Guo X, Ning C Z, Tong L 2013 Nano Lett. 13 5654

    [25]

    Falk A L, Koppens F H L, Yu C L, Kang K, Snapp N d L, Akimov A V, Jo M H, Lukin M D, Park H 2009 Nat. Phys. 5 475

    [26]

    Goodfellow K M, Chakraborty C, Beams R, Novotny L, Vamiyakas A N 2015 Nano Lett. 15 5477

    [27]

    Wei H, Pan D, Zhang S, Li Z, Li Q, Liu N, Wang W, Xu H 2018 Chem. Rev. 118 2882

    [28]

    Chen W, Zhang S, Deng Q, Xu H 2018 Nat. Commun. 9 801

    [29]

    Wang Y, Ma Y, Guo X, Tong L 2012 Opt. Express 20 19006

    [30]

    Zhang S H, Jiang Z Y, Xie Z X, Xu X, Huang R B, Zheng L S 2005 J. Phys. Chem. B 109 9416

    [31]

    Staleva H, Skrabalak S E, Carey C R, Kosel T, Xia Y, Hartland G V 2009 Phys. Chem. Chem. Phys. 11 5889

    [32]

    Wiley B, Sun Y G, Mayers B, Xia Y N 2005 Chem. Eur. J 11 454

    [33]

    Xia Y, Xiong Y, Lim B, Skrabalak S E 2009 Angew. Chem. Int. Ed. 48 60

    [34]

    Sun Y G, Xia Y N 2002 Adv. Mater. 14 833

    [35]

    Chang D E, Sorensen A S, Hemmer P R, Lukin M D 2007 Phys. Rev. B 76 035420

    [36]

    Pan D, Wei H, Jia Z, Xu H 2014 Sci. Rep. 4 4993

    [37]

    Pan D, Wei H, Gao L, Xu H 2016 Phys. Rev. Lett. 117 166803

    [38]

    Zou C L, Sun F W, Xiao Y F, Dong C H, Chen X D, Cui J M, Gong Q, Han Z F, Guo G C 2010 Appl. Phys. Lett. 97 183102

    [39]

    Li Z, Bao K, Fang Y, Guan Z, Halas N J, Nordlander P, Xu H 2010 Phys. Rev. B 82 241402

    [40]

    Zhang S, Xu H 2012 ACS Nano 6 8128

    [41]

    Wei H, Pan D, Xu H 2015 Nanoscale 7 19053

    [42]

    Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X 2008 Nat. Photon. 2 496

    [43]

    Oulton R F, Bartal G, Pile D F P, Zhang X 2008 New J. Phys. 10 105018

    [44]

    Song Y, Yan M, Yang Q, Tong L M, Qiu M 2011 Opt. Commun. 284 480

    [45]

    Jia Z, Wei H, Pan D, Xu H 2016 Nanoscale 8 20118

    [46]

    Ma Y, Li X, Yu H, Tong L, Gu Y, Gong Q 2010 Opt. Lett. 35 1160

    [47]

    Hua J, Wu F, Fan F, Wang W, Xu Z, Li F 2016 J. Phys.: Condens. Matter 28 254005

    [48]

    Kusar P, Gruber C, Hohenau A, Krenn J R 2012 Nano Lett. 12 661

    [49]

    Wu F, Wang W, Hua J, Xu Z, Li F 2016 Sci. Rep. 6 37512

    [50]

    Hua J, Wu F, Xu Z, Wang W 2016 Sci. Rep. 6 34418

    [51]

    Hajati M, Hajati Y 2016 J. Opt. Soc. Am. B 33 2560

    [52]

    Liu N, Wei H, Li J, Wang Z, Tian X, Pan A, Xu H 2013 Sci. Rep. 3 1967

    [53]

    Wang W, Yang Q, Fan F, Xu H, Wang Z L 2011 Nano Lett. 11 1603

    [54]

    Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg F R, Krenn J R 2005 Phys. Rev. Lett. 95 257403

    [55]

    Wei H, Zhang S, Tian X, Xu H 2013 Proc. Natl. Acad. Sci. USA 110 4494

    [56]

    Krenn J R, Lamprecht B, Ditlbacher H, Schider G, Salerno M, Leitner A, Aussenegg F R 2002 Europhys. Lett. 60 663

    [57]

    Jones A C, Olmon R L, Skrabalak S E, Wiley B J, Xia Y N, Raschke M B 2009 Nano Lett. 9 2553

    [58]

    Dorfmueller J, Vogelgesang R, Weitz R T, Rockstuhl C, Etrich C, Pertsch T, Lederer F, Kern K 2009 Nano Lett. 9 2372

    [59]

    Li X, Guo X, Wang D, Tong L 2014 Opt. Commun. 323 119

    [60]

    Wang W, Zhou W, Fu T, Wu F, Zhang N, Li Q, Xu Z, Liu W 2018 Nano Energy 48 197

    [61]

    Meng X, Zhu W, Li H, Zhai C, Zhang W 2018 Opt. Commun. 423 152

    [62]

    Zhang D, Xiang Y, Chen J, Cheng J, Zhu L, Wang R, Zou G, Wang P, Ming H, Rosenfeld M, Badugu R, Lakowicz J R 2018 Nano Lett. 18 1152

    [63]

    Paul A, Zhen Y R, Wang Y, Chang W S, Xia Y, Nordlander P, Link S 2014 Nano Lett. 14 3628

    [64]

    Li Y J, Xiong X, Zou C L, Ren X F, Zhao Y S 2015 Small 11 3728

    [65]

    Guo X, Qiu M, Bao J, Wiley B J, Yang Q, Zhang X, Ma Y, Yu H, Tong L 2009 Nano Lett. 9 4515

    [66]

    Li Y J, Yan Y, Zhang C, Zhao Y S, Yao J 2013 Adv. Mater. 25 2784

    [67]

    Yan Y, Zhang C, Zheng J Y, Yao J, Zhao Y S 2012 Adv. Mater. 24 5681

  • [1] Zhao Shi-Hang, Zhang Yuan, Lü Si-Yuan, Cheng Shao-Bo, Zheng Chang-Lin, Wang Lu-Xia. Numerical simulation of strong coupling between silver nanorod and dielectric layer detected by electron energy loss spectrum. Acta Physica Sinica, 2022, 71(14): 147302. doi: 10.7498/aps.71.20220194
    [2] Yan Xiao-Hong, Niu Yi-Jie, Xu Hong-Xing, Wei Hong. Strong coupling of single plasmonic nanoparticles and nanogaps with quantum emitters. Acta Physica Sinica, 2022, 71(6): 067301. doi: 10.7498/aps.71.20211900
    [3] Zhang Lian, Wang Hua-Yu, Wang Ning, Tao Can, Zhai Xue-Lin, Ma Ping-Zhun, Zhong Ying, Liu Hai-Tao. Broadband enhancement of spontaneous emission by optical dipole nanoantenna on metallic substrate: An intuitive model of surface plasmon polariton. Acta Physica Sinica, 2022, 71(11): 118101. doi: 10.7498/aps.70.20212290
    [4] Zhang Lian,  Wang Hua-Yu,  Wang Ning,  Tao Can,  Zhai Xue-Lin,  Ma Ping-Zhun,  Zhong Ying,  Liu Hai-Tao. Broadband Enhancement of the Spontaneous Emission by an Optical Dipole Nanoantenna on Metallic Substrate: an Intuitive Model of Surface Plasmon Polariton. Acta Physica Sinica, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20212290
    [5] Wu Han, Wu Jing-Yu, Chen Zhuo. Strong coupling between metasurface based Tamm plasmon microcavity and exciton. Acta Physica Sinica, 2020, 69(1): 010201. doi: 10.7498/aps.69.20191225
    [6] Li Chuang, Li Wei-Wei, Cai Li, Xie Dan, Liu Bao-Jun, Xiang Lan, Yang Xiao-Kuo, Dong Dan-Na, Liu Jia-Hao, Chen Ya-Bo. Flexible nitrogen dioxide gas sensor based on reduced graphene oxide sensing material using silver nanowire electrode. Acta Physica Sinica, 2020, 69(5): 058101. doi: 10.7498/aps.69.20191390
    [7] Zhang Duo-Duo, Liu Xiao-Feng, Qiu Jian-Rong. Ultrafast optical switches and pulse lasers based on strong nonlinear optical response of plasmon nanostructures. Acta Physica Sinica, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [8] Zhang Bao-Bao, Zhang Cheng-Yun, Zhang Zheng-Long, Zheng Hai-Rong. Surface plasmon mediated chemical reaction. Acta Physica Sinica, 2019, 68(14): 147102. doi: 10.7498/aps.68.20190345
    [9] Zhang Wen-Jun, Gao Long, Wei Hong, Xu Hong-Xing. Modulation of propagating surface plasmons. Acta Physica Sinica, 2019, 68(14): 147302. doi: 10.7498/aps.68.20190802
    [10] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [11] Zhou Li, Wang Qu-Quan. Plasmon resonance energy transfer and research progress in plasmon-enhanced photocatalysis. Acta Physica Sinica, 2019, 68(14): 147301. doi: 10.7498/aps.68.20190276
    [12] Liu Zi, Zhang Heng, Wu Hao, Liu Chang. Enhancement of photoluminescence from zinc oxide by aluminum nanoparticle surface plasmon. Acta Physica Sinica, 2019, 68(10): 107301. doi: 10.7498/aps.68.20190062
    [13] Li Pan. Research progress of plasmonic nanofocusing. Acta Physica Sinica, 2019, 68(14): 146201. doi: 10.7498/aps.68.20190564
    [14] Cheng Zi-Qiang, Shi Hai-Quan, Yu Ping, Liu Zhi-Min. Surface-enhanced Raman scattering effect of silver nanoparticles array. Acta Physica Sinica, 2018, 67(19): 197302. doi: 10.7498/aps.67.20180650
    [15] Zhu Xue-Tao, Guo Jian-Dong. Development of novel high-resolution electron energy loss spectroscopy and related studies on surface excitations. Acta Physica Sinica, 2018, 67(12): 127901. doi: 10.7498/aps.67.20180689
    [16] Deng Hong-Mei, Huang Lei, Li Jing, Lu Ye, Li Chuan-Qi. Tunable unidirectional surface plasmon polariton coupler utilizing graphene-based asymmetric nanoantenna pairs. Acta Physica Sinica, 2017, 66(14): 145201. doi: 10.7498/aps.66.145201
    [17] Sheng Shi-Wei, Li Kang, Kong Fan-Min, Yue Qing-Yang, Zhuang Hua-Wei, Zhao Jia. Tooth-shaped plasmonic filter based on graphene nanoribbon. Acta Physica Sinica, 2015, 64(10): 108402. doi: 10.7498/aps.64.108402
    [18] Yuan Lin, Jing Peng, Liu Yan-Hua, Xu Zhen-Hai, Shan De-Bin, Guo Bin. Molecular dynamics simulation of polycrystal silver nanowires under tensile deformation. Acta Physica Sinica, 2014, 63(1): 016201. doi: 10.7498/aps.63.016201
    [19] Hu Meng-Zhu, Zhou Si-Yang, Han Qin, Sun Hua, Zhou Li-Ping, Zeng Chun-Mei, Wu Zhao-Feng, Wu Xue-Mei. Ultraviolet surface plasmon polariton propagation for ZnO semiconductor-insulator-metal waveguides. Acta Physica Sinica, 2014, 63(2): 029501. doi: 10.7498/aps.63.029501
    [20] Wang Lei, Cai Wei, Tan Xin-Hui, Xiang Yin-Xiao, Zhang Xin-Zheng, Xu Jing-Jun. Effects of cross-section shape on fast electron beams excited plasmons in the surface of nanowire pairs. Acta Physica Sinica, 2011, 60(6): 067305. doi: 10.7498/aps.60.067305
Metrics
  • Abstract views:  7959
  • PDF Downloads:  78
  • Cited By: 0
Publishing process
  • Received Date:  23 November 2018
  • Accepted Date:  29 November 2018
  • Published Online:  20 December 2019

/

返回文章
返回
Baidu
map