Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

The study of intrinsic point defects and optoelectronic properties in monolayer Z-Bi2O2Se

Zheng Shi-Jiao Yang Wen-Yue Yang Zhi Xu Li-Chun Feng Lin Chen Bo Xue Lin

Citation:

The study of intrinsic point defects and optoelectronic properties in monolayer Z-Bi2O2Se

Zheng Shi-Jiao, Yang Wen-Yue, Yang Zhi, Xu Li-Chun, Feng Lin, Chen Bo, Xue Lin
Article Text (iFLYTEK Translation)
PDF
Get Citation
  • The novel layered semiconductor material bismuth oxyselenide (Bi2O2Se) exhibits exceptional properties such as thickness-dependent bandgap, superior electron mobility, compatibility with various materials, and stability under ambient conditions. The zipper-type two-dimensional Bi2O2Se (Z-Bi2O2Se) is a newly proposed structure based on theoretical studies of material surface dissociation mechanisms. However, current understanding of this structure remains primarily focused on fundamental investigations of electronic properties such as band structures. Intrinsic point defects, which are inevitable during material synthesis and operational environments, significantly influence the physical characteristics of materials and ultimately dictate device performance. This study conducts an in-depth exploration of intrinsic point defects in the material. Using first-principles calculations based on density functional theory (DFT) and non-equilibrium Green’s function (NEGF) methods, we systematically investigate the structural, electronic, and optoelectronic properties of vacancies, antisites, and adatom point defects in Z-Bi2O2Se. First, the formation energy calculations under different growth conditions reveal that Oxvacancy, Se replaced by O, Se adsorption on “Bix-Bix-Se” and “Bi-Bi-Se” hollow sites are relatively easy to form. The density of states (DOS) and formation energies shows that Oxvacancy, Se adsorption on “Bix-Bix-Se” and “Bi-Bi-Se” hollow sites tend to lose electrons and become positively charged. Their donor levels are located at 0.78 eV, 0.01 eV, and 0.07 eV above the valence band maximum (VBM), respectively, well below the conduction band minimum (CBM), indicating deep-level n-type doping characteristics. Furthermore, devices based on monolayer Z-Bi2O2Se along the parallel (Z//) and perpendicular (Z) directions of the "zipper" structure are constructed to investigate the influence of intrinsic point defects on optoelectronic performance. The results show that for pristine materials, the photocurrent of Z-perfect in the visible and ultraviolet regions is two orders of magnitude smaller than that of Z//-perfect, demonstrating significant anisotropy. The introduction of point defects reduces system symmetry, leading to a remarkable enhancement of photocurrent in both devices across these spectral regions. Notably, in the Z direction, point defects induce a photocurrent increase by three orders of magnitude. However, compared to Z//, the photocurrent remains relatively small, indicating persistent anisotropy. The impact of point defects on the extinction ratio depends on both defect types and photon energy. By selecting specific point defects under irradiation at targeted photon energies, the polarization sensitivity of devices can be effectively improved. These findings provide theoretical guidance for deepening the understanding of the electronic structure and optoelectronic properties of two-dimensional Z-Bi2O2Se.
  • [1]

    Wu J X, Yuan H T, Meng M M, Chen C, Sun Y, Chen Z Y, Dang W H, Tan C W, Liu Y J, Yin J B, Zhou Y B, Huang S Y, Xu H Q, Cui Y, Hwang H Y, Liu Z F, Chen Y L, Yan B H, Peng H L 2017 Nature Nanotech. 12 530

    [2]

    Fu H X, Wu J X, Peng H L, Yan B H 2018 Phys. Rev. B 95 241203

    [3]

    Wang C, Ding G Q, Wu X M, Wei S S, Gao G Y 2018 New J. Phys. 20 123014

    [4]

    Jiang H, Xu X, Fan C, Dai B, Qi Z, Jiang S, Cai M, Zhang Q 2022 Chin. Phys. B 31048102

    [5]

    Li J, Wang Z X, Wen Y, Chu J, Yin L, Cheng R Q, Lei L, He P, Jiang C, Feng L P, He J 2018 Adv. Funct. Mater. 28 1706437

    [6]

    Tong T, Chen Y F, Qin S C, Li W S, Zhang J R, Zhu C H, Zhang C C, Yuan X, Chen X Q, Nie Z H, Wang X R, Hu W D, Wang F Q, Liu W Q, Wang P, Wang X F, Zhang R, Xu Y B 2019 Adv. Funct. Mater. 29 1905806

    [7]

    Liu B, Zhou H 2021 Chin. Phys. B 30106803

    [8]

    Ding X, Li M L, Chen P, Zhao Y, Zhao M, Leng H Q, Wang Y, Ali S F, Raziq F, Wu X Q, Xiao H Y, Zu X T, Wang Q Y, Vinu A, Yi J B, Qiao L 2022 Matter 5 4274

    [9]

    Tippireddy S, D S P K, Das S, Mallik R C 2021 ACS Appl. Energy Mater. 4 2022

    [10]

    Wu J X, Tan C W, Tan Z J, Liu Y J, Yin J B, Dang W H, Wang M Z, Peng H L 2017 Nano. Lett. 17 3021

    [11]

    Liang Y, Chen Y J, Sun Y W, Xu S P, Wu J X, Tan C W, Xu X F, Yuan H T, Yang L X, Chen Y L, Gao P, Guo J D, Peng H L 2019 Adv. Mater. 31 1901964

    [12]

    Wu J X, Qiu C G, Fu H X, Chen S L, Zhang C C, Dou Z P, Tan C W, Tu T, Li T R, Zhang Y C, Zhang Z Y, Peng L M, Gao P, Yan B H, Peng H L 2019 Nano. Lett. 19 197

    [13]

    Song Y K, Li Z J, Li H, Tang S J, Mu G, Xu L X, Peng W, Shen D W, Chen Y L, Xie X M, Jiang M H 2020 Nanotechnol. 31 165704

    [14]

    Wang H, Zhang Z K, Luo H J, Zhang S Q, Pan W W, Liu J L, Ren Y L, Lei W 2024 Adv. Optical Mater. 12 2401404

    [15]

    Chen G, Wu J, Wang B, Li J, Qi X 2020 Appl. Phys. A 126 579

    [16]

    Chen G, Zhou Y, Zhang G, Li J, Qi X 2021 Ceram. Int. 47 25255

    [17]

    Li D Y, Han X, Xu G Y, Liu X, Zhao X J, Li G W, Hao H Y, Dong J J, Liu H, Xing J 2020 Acta Phys. Sin. 69 248502 (in Chinese)[李丹阳,韩旭,徐光远,刘筱,赵枭钧,李庚伟,郝会颖,董敬敬,刘昊,邢杰2020 69248502]

    [18]

    Khan U, Luo Y T, Tang L, Teng C J, Liu J M, Liu B L, Cheng H M 2019 Adv. Funct. Mater. 29 1807979

    [19]

    Wang N, Li M L, Xiao H Y, Gong H F, Liu Z J, Zu X T, Qiao L 2019 Phys. Chem. Chem. Phys. 21 15097

    [20]

    Tang H, Shi B W, Wang Y Y, Yang C, Liu S Q, Li Y, Quhe R G, Lu J 2021 Phys. Rev. Appl. 15 064037

    [21]

    Pang Z Q, Li T 2021 J. Mech. Phys. Solids 157 104626

    [22]

    Li J Q, Cheng C, Duan M Y 2023 Appl. Surf. Sci. 618 156541

    [23]

    Wei Q L, Li R P, Lin C Q, Han A, Nie A M, Li Y R, Li L J, Cheng Y C, Huang W 2019 ACS Nano. 13 13439

    [24]

    Chen C, Wang M X, Wu J X, Fu H X, Yang H F, Tian Z, Tu T, Peng H, Sun Y, Xu X, Jiang J, Schroter N B M, Li Y W, Pei D, Liu S, Ekahana S A, Yuan H T, Xue J M, Li G, Jia J F, Liu Z K, Yan B H, Peng H L, Chen Y L 2018 Sci. Adv. 4 8355

    [25]

    Ge Z C, Zhao W, Yuan S F, Gao Z X, Hao C L, Ma H, Ren H, Guo W Y 2023 Appl. Surf. Sci. 611 155528

    [26]

    Lu S C, Li Y L, Zhao X 2023 Phys. Chem. Chem. Phys. 25 19167

    [27]

    Hossain M T, Jena T, Debnath S, Giri P K 2023 J. Mater. Chem. C 11 6670

    [28]

    Li H L, Xu X T, Zhang Y, Gillen R, Shi L P, Robertson J 2018 Sci. Rep. 8 10920

    [29]

    Wei Q L, Lin C Q, Li Y F, Zhang X Y, Zhang Q Y, Shen Q, Cheng Y C, Huang W 2018 J. Appl. Phys. 124 055701

    [30]

    Wu Z, Wang Y, Liu G, Yang X, Wei T, Zhang H, Zhou J, Zhu J 2021 Mater. Today 21 100810

    [31]

    Kresse G, Furthmüller J 1996 Comput. Mater. Sci. 6 15

    [32]

    Kresse G, Hafner J 1993 Phys. Rev. B 47 558

    [33]

    Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169

    [34]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758

    [35]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865

    [36]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253

    [37]

    Kohn W, Sham L J 1965 Phys. Rev. 140 A1133

    [38]

    Freysoldt C, Neugebauer J 2018 Phys. Rev. B 97 205425

    [39]

    Freysoldt C, Neugebauer J, Van de Walle C G 2009 Phys. Rev. Lett. 102 016402

    [40]

    Xue L, Sun L Z, Hao G L, Zhou P, He C Y, Huang Z Y, Zhong J X 2014 RSC Advances 4 10499

    [41]

    Huang M L, Zheng Z N, Dai Z X, Guo X J, Wang S S, Jiang L L, Wei J C, Chen S Y 2022 J. Semicond. 43 042101

    [42]

    Fu Z T, Yan P L, Li J, Zhang S F, He C Y, Ouyang T, Zhang C X, Tang C, Zhong J X 2022 Nanoscale 14 11316

    [43]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 245407

    [44]

    Zhang L, Gong K, Chen J Z, Liu L, Zhu Y, Xiao D, Guo H 2014 Phys. Rev. B 90 195428

    [45]

    Chen J Z, Hu Y B, Guo H 2012 Phys. Rev. B 85 155441

    [46]

    Chu F H, Chen M Y, Wang Y, Xie Y Q, Liu B Y, Yang Y H, An X T, Zhang Y Z 2018 J. Mater. Chem. C 6 2509

    [47]

    Xie Y Q, Zhang L, Zhu Y, Liu L, Guo H 2015 Nanotechnol. 26 455202

    [48]

    Xu Z H, Luo B, Chen M Y, Xie W Z, Hu Y B, Xiao X B 2021 Appl. Surf. Sci. 548 148751

    [49]

    Belinicher V I 1978 Phys. Lett. A 66 213

    [50]

    Zhang L W, Yang Y Q, Chen J, Zhang L 2023 Front. Phys. 18 62301

    [51]

    Luo Y Z, Xie Y Q, Zhao J, Hu Y B, Ye X, Ke S H 2021 Phys. Rev.Mater. 5 054004

    [52]

    Zhao J, Hu Y B, Xie Y Q, Zhang L, Wang Y 2020 Phys. Rev. Appl. 14 064003

    [53]

    Sun X X, Yin S Q, Wei D, Li Y, Ma Y Q, Dai X Q 2023 Appl. Surf. Sci. 610 155401

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, doi: 10.7498/aps.73.20240754
    [2] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, doi: 10.7498/aps.70.20210268
    [3] He Yan-Bin, Bai Xi. Electron transport of one-dimensional non-conjugated (CH2)n molecule chain coupling to graphene electrode. Acta Physica Sinica, doi: 10.7498/aps.70.20200953
    [4] Liang Jin-Tao, Yan Xiao-Hong, Zhang Ying, Xiao Yang. Non-collinear magnetism and electronic transport of boron or nitrogen doped zigzag graphene nanoribbon. Acta Physica Sinica, doi: 10.7498/aps.68.20181754
    [5] Liu Si-Mian, Han Wei-Zhong. Mechanism of interaction between interface and radiation defects in metal. Acta Physica Sinica, doi: 10.7498/aps.68.20190128
    [6] Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen. Point defects: key issues for II-oxides wide-bandgap semiconductors development. Acta Physica Sinica, doi: 10.7498/aps.68.20191043
    [7] Chen Xiao-Bin, Duan Wen-Hui. Quantum thermal transport and spin thermoelectrics in low-dimensional nano systems: application of nonequilibrium Green's function method. Acta Physica Sinica, doi: 10.7498/aps.64.186302
    [8] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electron transport through Si4 cluster. Acta Physica Sinica, doi: 10.7498/aps.62.140504
    [9] Liu Fu-Ti, Cheng Yan, Yang Fu-Bin, Cheng Xiao-Hong, Chen Xiang-Rong. First-principles calculations of the electronic transport in Au-Si-Au junctions. Acta Physica Sinica, doi: 10.7498/aps.62.107401
    [10] Jiao Zhao-Yong, Guo Yong-Liang, Niu Yi-Jun, Zhang Xian-Zhou. The first principle study of electronic and optical properties of defect chalcopyrite XGa2S4 (X=Zn, Cd, Hg). Acta Physica Sinica, doi: 10.7498/aps.62.073101
    [11] Deng Jiao-Jiao, Liu Bo, Gu Mu, Liu Xiao-Lin, Huang Shi-Ming, Ni Chen. First principles calculation of electronic structures and optical properties for -CuX(X = Cl, Br, I). Acta Physica Sinica, doi: 10.7498/aps.61.036105
    [12] Cao Yong-Jun, Tan Wei, Liu Yan. Coupling characteristics of point defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, doi: 10.7498/aps.61.117501
    [13] Yu Dong-Qi, Zhang Zhao-Hui. First principles calculations of interaction between an armchair-edge graphene nanoribbon and its graphite substrate. Acta Physica Sinica, doi: 10.7498/aps.60.036104
    [14] Lü Quan, Huang Wei-Qi, Wang Xiao-Yun, Meng Xiang-Xiang. The first-principle calculations and analysis on density of states of silion plane (111) formed by nitrogen film. Acta Physica Sinica, doi: 10.7498/aps.59.7880
    [15] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, doi: 10.7498/aps.59.3414
    [16] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, doi: 10.7498/aps.59.4818
    [17] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, doi: 10.7498/aps.59.515
    [18] Zheng Xin-Liang, Zheng Ji-Ming, Ren Zhao-Yu, Guo Ping, Tian Jin-Shou, Bai Jin-Tao. First-principles investigations on the electron transport of a TaSi3 cluster. Acta Physica Sinica, doi: 10.7498/aps.58.5709
    [19] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb doping on electronic structure of TiO2/NiTi interface: A first-principle study. Acta Physica Sinica, doi: 10.7498/aps.57.7794
    [20] Sun Bo, Liu Shao-Jun, Duan Su-Qing, Zhu Wen-Jun. First-principles calculations of structures, properties and high pressures effects of Fe. Acta Physica Sinica, doi: 10.7498/aps.56.1598
Metrics
  • Abstract views:  13
  • PDF Downloads:  0
  • Cited By: 0
Publishing process
  • Available Online:  24 April 2025

/

返回文章
返回
Baidu
map