-
宽禁带II族氧化物半导体材料体系, 包括氧化铍(BeO)、氧化镁(MgO)、氧化锌(ZnO)及合金, 拥有较大的激子结合能(ZnO 60 meV, MgO 80 meV), 较高的光学增益(ZnO 300 cm–1)以及较宽的可调带隙(ZnO 3.37 eV, MgO 7.8 eV, BeO 10.6 eV), 具有实现紫外及深紫外波段低阈值激光器的独特优势, 同时也是取代传统气体放电灯(汞灯、氘灯、准分子灯、氙灯)成为深紫外乃至真空紫外光源的重要候选材料之一. 虽然经过20余年的研究历程, ZnO基pn同质结近紫外电致发光方向取得了长足进步, 但是, 随着带隙的展宽, 伴随而来的受主(施主)离化能变高(百毫电子伏特量级), 使得室温等效热能(26 meV)无法实现对杂质能级上的空穴(电子)有效离化; 此外, 掺杂过程中存在的自补偿效应也进一步弱化了载流子的产率, 以上因素已经成为了阻碍宽禁带II 族氧化物半导体实现紫外激光器件及向更短波长扩展的瓶颈性问题, 同时也是其他宽禁带半导体材料共同面对的难题. 对材料电学及发光性能的调控往往取决于对关键缺陷态的识别与控制, 丰富的点缺陷及其组合类型, 使宽禁带II族氧化物半导体成为研究缺陷物理的重要平台. 针对特定点缺陷的识别及表征将有望发现并进一步构建能级较浅的缺陷态, 为电学性能调控提供基础. 本文从高质量外延生长、杂质与点缺陷、p型掺杂及紫外电致发光三个方面阐述II族氧化物半导体近期研究结果, 通过对相关研究工作的概览, 阐明该体系作为深紫外光源材料的独特优势的同时, 指明未来针对电学性能调控的关键在于对点缺陷的调控.II-oxides wide-bandgap semiconductor, including the beryllium oxide (BeO), magnesium oxide (MgO), zinc oxide (ZnO), have large exciton binding energy (ZnO 60 meV, MgO 80 meV), high optical gain (ZnO 300 cm–1) and wide tunable band gap (3.37 eV ZnO, MgO 7.8 eV, BeO 10.6 eV), which are the advantages of achieving low-threshold laser devices in the ultraviolet wavelength. It is also one of the important candidates to replace the traditional gas arc lamp (such as mercury lamp, deuterium lamp, excimer lamp, xenon lamp etc.) as the source of deep ultraviolet and even vacuum ultraviolet. Although, during the past decades, the ZnO-based pn homojunction devices have made great progress in the near-UV electroluminescence, but as the band gap broadens, the acceptor (or donor) ionization energy becomes higher (On the order of hundreds meV), which causing the room temperature equivalent thermal energy (26 meV) cannot make the impurities ionizing effectively. In addition, the self-compensation effect in the doping process further weakens the carrier yield. These above drawbacks have become the bottleneck that hinders II-oxides wide-bandgap semiconductor from achieving ultraviolet laser devices and expanding to shorter wavelengths, and are also a common problem faced by other wide-bandgap semiconductor materials. The regulation of the electrical and luminescent properties of materials often depends on the control of critical defect states. The rich point defects and their combination types make the II-oxides wide-bandgap semiconductors an important platform for studying defect physics. For the identification and characterization of specific point defects, it is expected to discover and further construct shallower defect states, which will provide a basis for the regulation of electrical performance. In this paper, recent research results of II-oxides wide-bandgap semiconductors will be described from three aspects: high-quality epitaxial growth, impurity and point defects, p-type doping and ultraviolet electroluminescence. Through the overview of related research works, II-oxides wide-bandgap semiconductors are clarified as deep ultraviolet light sources materials. Meanwhile, indicates that the key to the regulation of electrical performance in the future lies in the regulation of point defects.
-
Keywords:
- wide-bandgap /
- point defects /
- doping /
- ionization energy
[1] Prakash V, Agarwal A, Mussada E K 2019 Silicon 11 1617
Google Scholar
[2] Neubert M, Rudolph P 2001 Prog. Cryst. Growth Charact. Mater. 43 119
Google Scholar
[3] Mullin J B 2004 J. Cryst. Growth 264 578
Google Scholar
[4] Nakamura S 2015 Rev. Mod. Phys. 87 1139
Google Scholar
[5] Akasaki I 2015 Rev. Mod. Phys. 87 1119
Google Scholar
[6] Amano H 2015 Rev. Mod. Phys. 87 1133
Google Scholar
[7] Liang Y H, Towe E 2018 Appl. Phys. Rev. 5 011107
Google Scholar
[8] Walsh A, Zunger A 2017 Nat. Mater. 16 964
Google Scholar
[9] Chen Y F, Ko H J, Hong S K, Yao T, Segawa Y 2000 J. Cryst. Growth 214 87
Google Scholar
[10] Chen Y F, Ko H J, Hong S K, Yao T 2000 Appl. Phys. Lett. 76 559
Google Scholar
[11] Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H 2000 Appl. Phys. Lett. 77 1801
Google Scholar
[12] Fons P, Iwata K, Niki S, Yamada A, Matsubara K, Watanabe M 2000 J. Cryst. Growth 209 532
Google Scholar
[13] Liu J S, Shan C X, Wang S P, Sun F, Yao B, Shen D Z 2010 J. Cryst. Growth 312 2861
Google Scholar
[14] Kato H, Miyamoto K, Sano M, Yao T 2004 Appl. Phys. Lett. 84 4562
Google Scholar
[15] Hong S K, Hanada T, Ko H J, Chen Y F, Yao T, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M 2002 Phys. Rev. B 65 115331
Google Scholar
[16] Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T, Lee J W, Lee J Y 2007 Appl. Phys. Lett. 90 201907
Google Scholar
[17] Xie X H, Li B H, Zhang Z Z, Wang S P, Shen D Z 2018 Sci. Rep. 8 17020
Google Scholar
[18] Helbig R 1972 J. Cryst. Growth. 15 25
Google Scholar
[19] Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G, Harsch W C 1998 Solid State Commun. 105 399
Google Scholar
[20] Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T 2004 J. Cryst. Growth 260 166
Google Scholar
[21] Maeda K, Sato M, Niikura I, Fukuda T 2005 Semicond. Sci. Technol. 20 S49
Google Scholar
[22] Ehrentraut D, Maeda K, Kano M, Fujii K, Fukuda T 2011 J. Cryst. Growth 320 18
Google Scholar
[23] Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J, Krost A 2007 Appl. Phys. Lett. 90 042103
Google Scholar
[24] Takamizu D, Nishimoto Y, Akasaka S, Yuji H, Tamura K, Nakahara K, Onuma T, Tanabe T, Takasu H, Kawasaki M, Chichibu S F 2008 J. Appl. Phys. 103 063502
Google Scholar
[25] Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 2-Lett. 42 L1002
Google Scholar
[26] Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42 2241
Google Scholar
[27] Park S H, Minegishi T, Lee H J, Oh D C, Ko H J, Chang J H, Yao T 2011 J. Appl. Phys. 110 053520
Google Scholar
[28] Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889
Google Scholar
[29] Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501
Google Scholar
[30] Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237
Google Scholar
[31] Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529
Google Scholar
[32] Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327
Google Scholar
[33] Teng C W, Muth J F, Ozgur U, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979
Google Scholar
[34] Coli G, Bajaj K K 2001 Appl. Phys. Lett. 78 2861
Google Scholar
[35] Ohtomo A, Shiroki R, Ohkubo I, Koinuma H, Kawasaki M 1999 Appl. Phys. Lett. 75 4088
Google Scholar
[36] Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T, Setiawan A 2005 J. Appl. Phys. 98 054911
Google Scholar
[37] Tanaka H, Fujita S, Fujita S 2005 Appl. Phys. Lett. 86 192911
Google Scholar
[38] Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B, Lin Z 2011 Appl. Phys. Lett. 98 221112
Google Scholar
[39] Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H, Shan C X 2009 Appl. Phys. Lett. 95 131113
Google Scholar
[40] Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y, Shen D Z 2014 Opt. Express 22 246
Google Scholar
[41] Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2009 Appl. Phys. Lett. 94 101902
Google Scholar
[42] Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2008 Appl. Phys. Lett. 93 173505
Google Scholar
[43] Kaneko K, Onuma T, Tsumura K, Uchida T, Jinno R, Yamaguchi T, Honda T, Fujita S 2016 Appl. Phys. Express 9 111102
Google Scholar
[44] Onuma T, Ono M, Ishii K, Kaneko K, Yamaguchi T, Fujita S, Honda T 2018 Appl. Phys. Lett. 113 061903
Google Scholar
[45] Kaneko K, Tsumura K, Ishii K, Onuma T, Honda T, Fujita S 2018 J. Electron. Mater. 47 4356
Google Scholar
[46] Wen M C, Lu S A, Chang L, Chou M M C, Ploog K H 2017 J. Cryst. Growth 477 169
Google Scholar
[47] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103
Google Scholar
[48] Kim W J, Leem J H, Han M S, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104
Google Scholar
[49] Su L X, Zhu Y, Chen M M, Zhang Q L, Su Y Q, Ji X, Wu T Z, Gui X C, Xiang R, Tang Z K 2013 Appl. Phys. Lett. 103 072104
Google Scholar
[50] Jeong T S, Han M S, Kim J H, Bae S J, Youn C J 2007 J. Phys. D-Appl. Phys. 40 370
Google Scholar
[51] Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z, Tang Z K 2012 J. Phys. D-Appl. Phys. 45 455101
Google Scholar
[52] Ye D Q, Mei Z X, Liang H L, Liu Y L, Azarov A, Kuznetsov A, Du X L 2014 J. Phys. D-Appl. Phys. 47 175102
Google Scholar
[53] Park S H, Ahn D 2014 Physica B 441 12
Google Scholar
[54] Su L X, Zhu Y, Zhang Q L, Chen M M, Wu T Z, Gui X C, Pan B C, Xiang R, Tang Z K 2013 Appl. Surf. Sci. 274 341
Google Scholar
[55] Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Pan B C 2014 J. Alloys Compd. 608 197
Google Scholar
[56] Ding K, Ullah M B, Avrutin V, Ozgur U, Morkoc H 2017 Appl. Phys. Lett. 111 182101
Google Scholar
[57] Gorczyca I, Teisseyre H, Suski T, Christensen N E, Svane A 2016 J. Appl. Phys. 120 215704
Google Scholar
[58] Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V, Morkoc H, Ozgur U 2016 J. Appl. Phys. 119 095311
Google Scholar
[59] Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith D J, Morkoc H, Ozgur U 2014 J. Cryst. Growth 402 60
Google Scholar
[60] Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2010 J. Cryst. Growth 312 978
Google Scholar
[61] Toporkov M, Ullah M B, Demchenko D O, Avrutin V, Morkoc H, Ozgur U 2017 J. Cryst. Growth 467 145
Google Scholar
[62] Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I, Ozgur U, Morkoc H 2017 J. Appl. Phys. 121 185704
Google Scholar
[63] Roessler D M, Walker W C 1967 Phys. Rev. 159 733
Google Scholar
[64] Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832
[65] Ashrafi A, Jagadish C 2007 J. Appl. Phys. 102 071101
Google Scholar
[66] Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C, Tang Z K 2014 J. Alloys Compd. 616 505
Google Scholar
[67] Chen M M, Zhu Y, Su L X, Zhang Q L, Chen A Q, Ji X, Xiang R, Gui X C, Wu T Z, Pan B C, Tang Z K 2013 Appl. Phys. Lett. 102 202103
Google Scholar
[68] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253
Google Scholar
[69] Kohan A F, Ceder G, Morgan D, Van de Walle C G 2000 Phys. Rev. B 61 15019
Google Scholar
[70] Sokol A A, French S A, Bromley S T, Catlow C R A, van Dam H J J, Sherwood P 2007 Faraday Discuss. 134 267
Google Scholar
[71] Lyons J L, Janotti A, Van de Walle C G 2009 Appl. Phys. Lett. 95 252105
Google Scholar
[72] Wang L G, Zunger A 2003 Phys. Rev. Lett. 90 256401
Google Scholar
[73] Duan X M, Stampfl C, Bilek M M M, McKenzie D R 2009 Phys. Rev. B 79 235208
Google Scholar
[74] Urban D F, Korner W, Elsasser C 2016 Phys. Rev. B 94 075140
Google Scholar
[75] Puchala B, Morgan D 2012 Phys. Rev. B 85 195207
Google Scholar
[76] Limpijumnong S, Zhang S B, Wei S H, Park C H 2004 Phys. Rev. Lett. 92 155504
Google Scholar
[77] Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201
Google Scholar
[78] Gai Y Q, Li J B, Li S S, Xia J B, Yan Y F, Wei S H 2009 Phys. Rev. B 80 153201
Google Scholar
[79] Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 AIP Adv. 8 035115
[80] Lautenschlaeger S, Sann J, Volbers N, Meyer B K, Hoffmann A, Haboeck U, Wagner M R 2008 Phys. Rev. B 77 144108
[81] Akasaka S, Nakahara K, Yuji H, Tsukazaki A, Ohtomo A, Kawasaki M 2011 Appl. Phys. Express 4 035701
[82] Kozuka Y, Tsukazaki A, Kawasaki M 2014 Appl. Phys. Rev. 1 011303
[83] Akasaka S, Tsukazaki A, Nakahara K, Ohtomo A, Kawasaki M 2011 Jpn. J. Appl. Phys. 50 080215
[84] Oba F, Choi M, Togo A, Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302
Google Scholar
[85] Ellmer K, Bikowski A 2016 J. Phys. D-Appl. Phys. 49 413002
Google Scholar
[86] McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101
Google Scholar
[87] Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
Google Scholar
[88] Janotti A, Van de Walle C G 2007 Phys. Rev. B 76 165202
Google Scholar
[89] Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202
Google Scholar
[90] Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824
Google Scholar
[91] Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112
Google Scholar
[92] Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R, Brillson L J 2011 Phys. Rev. B 84 115202
Google Scholar
[93] Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206
Google Scholar
[94] Ton-That C, Weston L, Phillips M R 2012 Phys. Rev. B 86 115205
Google Scholar
[95] Alkauskas A, Pasquarello A 2011 Phys. Rev. B 84 125206
Google Scholar
[96] Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G, Kuznetsov A Y 2012 Phys. Rev. B 86 121203
Google Scholar
[97] Can M M, Shah S I, Doty M F, Haughn C R, Firat T 2012 J. Phys. D-Appl. Phys. 45 195104
Google Scholar
[98] Kim D H, Lee G W, Kim Y C 2012 Solid State Commun. 152 1711
Google Scholar
[99] Travlos A, Boukos N, Chandrinou C, Kwack H S, Dang L S 2009 J. Appl. Phys. 106 104307
Google Scholar
[100] Selim F A, Weber M H, Solodovnikov D, Lynn K G 2007 Phys. Rev. Lett. 99 085502
Google Scholar
[101] Erhart P, Albe K 2006 Appl. Phys. Lett. 88 201918
Google Scholar
[102] Vlasenko L S, Watkins G D 2005 Phys. Rev. B 72 035203
Google Scholar
[103] Liu H Y, Izyumskaya N, Avrutin V 2012 J. Appl. Phys. 112 033706
Google Scholar
[104] Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501
Google Scholar
[105] Xie X H, Li B H, Zhang Z Z, Shen D Z 2017 J. Phys. D-Appl. Phys. 50 325304
Google Scholar
[106] Sanyal D, Roy T K, Chakrabarti M, Dechoudhury S, Bhowmick D, Chakrabarti A 2008 J. Phys.-Condes. Matter 20 045217
Google Scholar
[107] Ono R, Togimitsu T, Sato W 2015 J. Radioanal. Nucl. Chem. 303 1223
Google Scholar
[108] Khan E H, Weber M H, McCluskey M D 2013 Phys. Rev. Lett. 111 017401
Google Scholar
[109] Makkonen I, Korhonen E, Prozheeva V, Tuomisto F 2016 J. Phys.-Condes. Matter 28 224002
Google Scholar
[110] Chakrabarti M, Jana D, Sanyal D 2013 Vacuum 87 16
Google Scholar
[111] Sarkar A, Chakrabarti M, Ray S K, Bhowmick D, Sanyal D 2011 J. Phys.-Condes. Matter 23 155801
Google Scholar
[112] Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 205305
Google Scholar
[113] Chen Z Q, Betsuyaku K, Kawasuso A 2008 Phys. Rev. B 77 113204
Google Scholar
[114] Erdem E 2017 Nanoscale 9 10983
Google Scholar
[115] Lambrecht W R L, Boonchun A 2013 Phys. Rev. B 87 195207
Google Scholar
[116] Parashar S K S, Murty B S, Repp S, Weber S, Erdem E 2012 J. Appl. Phys. 111 113712
Google Scholar
[117] Vlasenko L S 2010 Appl. Magn. Reson. 39 103
Google Scholar
[118] Vlasenko L S 2009 Physica B 404 4774
Google Scholar
[119] Zheng H, Weismann A, Berndt R 2013 Phys. Rev. Lett. 110 226101
Google Scholar
[120] Xu H, Dong L, Shi X Q, Van Hove M A, Ho W K, Lin N, Wu H S, Tong S Y 2014 Phys. Rev. B 89 235403
Google Scholar
[121] Stavale F, Nilius N, Freund H J 2013 J. Phys. Chem. Lett. 4 3972
Google Scholar
[122] Dulub O, Boatner L A, Diebold U 2002 Surf. Sci. 519 201
Google Scholar
[123] Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga Perez J, Munoz-Sanjose V 2006 J. Appl. Phys. 99 053516
Google Scholar
[124] Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943
Google Scholar
[125] Dong Y F, Tuomisto F, Svensson B G, Kuznetsov A Y, Brillson L J 2010 Phys. Rev. B 81 081201
Google Scholar
[126] Reshchikov M A 2014 J. Appl. Phys. 115 012010
Google Scholar
[127] Zhu L C, Lockrey M, Phillips M R, Cuong T T 2018 Phys. Status Solidi A-Appl. Mat. 215 1800389
Google Scholar
[128] Wu X L, Siu G G, Fu C L, Ong H C 2001 Appl. Phys. Lett. 78 2285
Google Scholar
[129] Liu X Y, Shan C X, Zhu H, Li B H, Jiang M M, Yu S F, Shen D Z 2015 Sci. Rep. 5 13641
Google Scholar
[130] Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z, Choy K L 2011 J. Mater. Chem. 21 2848
Google Scholar
[131] McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W, Ha S 2015 J. Appl. Phys. 117 112802
Google Scholar
[132] Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874
Google Scholar
[133] Reynolds J G, Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058
[134] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nat. Mater. 4 42
[135] Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K 2006 Appl. Phys. Lett. 88 031911
Google Scholar
[136] Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106
Google Scholar
[137] Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J, Liu J L 2011 Nat. Nanotechnol. 6 506
Google Scholar
[138] Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 J. Phys. D-Appl. Phys. 51 225104
Google Scholar
[139] Stehr J E, Wang X J, Filippov S, Pearton S J, Ivanov I G, Chen W M, Buyanova I A 2013 J. Appl. Phys. 113 103509
Google Scholar
[140] Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207
Google Scholar
[141] Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A 2012 J. Am. Chem. Soc. 134 464
Google Scholar
[142] Ye Z Z, He H P, Jiang L 2018 Nano Energy 52 527
Google Scholar
[143] Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C, Tang Z K 2016 Adv. Funct. Mater. 26 3696
Google Scholar
[144] Sun F, Shan C X, Li B H, Zhang Z Z, Shen D Z, Zhang Z Y, Fan D 2011 Opt. Lett. 36 499
Google Scholar
[145] Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106
Google Scholar
-
图 1 ZnO外延生长过程中缓冲层的RHEED线条图像演变过程 (a)氧等离子体处理后的蓝宝石(0001)表面; (b) 二维成核阶段的MgO缓冲层表面; (c) MgO缓冲层开始三维成岛状生长; (d) 薄层低温ZnO缓冲层生长在MgO上; (e) 退火后的ZnO缓冲层表现出平整二维表面[9]
Fig. 1. Evolution of RHEED line image of buffer layer during epitaxial growth of ZnO: (a) Oxygen plasma treated sapphire (0001) surface; (b) MgO buffer layer surface in two-dimensional nucleation stage; (c) the MgO buffer layer begins to grow into three-dimensional islands; (d) thin layer low temperature ZnO buffer layer grown on MgO; (e) annealed ZnO buffer layer exhibits a flat two-dimensional surface[9]
图 7 ZnO薄膜中杂质浓度的深度分布情况 (a)非故意掺杂层中Si, Mo, Ta, Al的分布情况; (b)氮掺杂层中C, B, N, Cl, F的分布情况; (c) 施主型杂质元素经抑制后的纵向分布情况[79]
Fig. 7. Depth distribution of impurity concentration in ZnO thin films: (a) Distribution of Si, Mo, Ta and Al in unintentionally doped layers; (b) longitudinal distribution of donor-type impurity elements after suppression[79]
-
[1] Prakash V, Agarwal A, Mussada E K 2019 Silicon 11 1617
Google Scholar
[2] Neubert M, Rudolph P 2001 Prog. Cryst. Growth Charact. Mater. 43 119
Google Scholar
[3] Mullin J B 2004 J. Cryst. Growth 264 578
Google Scholar
[4] Nakamura S 2015 Rev. Mod. Phys. 87 1139
Google Scholar
[5] Akasaki I 2015 Rev. Mod. Phys. 87 1119
Google Scholar
[6] Amano H 2015 Rev. Mod. Phys. 87 1133
Google Scholar
[7] Liang Y H, Towe E 2018 Appl. Phys. Rev. 5 011107
Google Scholar
[8] Walsh A, Zunger A 2017 Nat. Mater. 16 964
Google Scholar
[9] Chen Y F, Ko H J, Hong S K, Yao T, Segawa Y 2000 J. Cryst. Growth 214 87
Google Scholar
[10] Chen Y F, Ko H J, Hong S K, Yao T 2000 Appl. Phys. Lett. 76 559
Google Scholar
[11] Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H 2000 Appl. Phys. Lett. 77 1801
Google Scholar
[12] Fons P, Iwata K, Niki S, Yamada A, Matsubara K, Watanabe M 2000 J. Cryst. Growth 209 532
Google Scholar
[13] Liu J S, Shan C X, Wang S P, Sun F, Yao B, Shen D Z 2010 J. Cryst. Growth 312 2861
Google Scholar
[14] Kato H, Miyamoto K, Sano M, Yao T 2004 Appl. Phys. Lett. 84 4562
Google Scholar
[15] Hong S K, Hanada T, Ko H J, Chen Y F, Yao T, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M 2002 Phys. Rev. B 65 115331
Google Scholar
[16] Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T, Lee J W, Lee J Y 2007 Appl. Phys. Lett. 90 201907
Google Scholar
[17] Xie X H, Li B H, Zhang Z Z, Wang S P, Shen D Z 2018 Sci. Rep. 8 17020
Google Scholar
[18] Helbig R 1972 J. Cryst. Growth. 15 25
Google Scholar
[19] Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G, Harsch W C 1998 Solid State Commun. 105 399
Google Scholar
[20] Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T 2004 J. Cryst. Growth 260 166
Google Scholar
[21] Maeda K, Sato M, Niikura I, Fukuda T 2005 Semicond. Sci. Technol. 20 S49
Google Scholar
[22] Ehrentraut D, Maeda K, Kano M, Fujii K, Fukuda T 2011 J. Cryst. Growth 320 18
Google Scholar
[23] Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J, Krost A 2007 Appl. Phys. Lett. 90 042103
Google Scholar
[24] Takamizu D, Nishimoto Y, Akasaka S, Yuji H, Tamura K, Nakahara K, Onuma T, Tanabe T, Takasu H, Kawasaki M, Chichibu S F 2008 J. Appl. Phys. 103 063502
Google Scholar
[25] Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 2-Lett. 42 L1002
Google Scholar
[26] Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42 2241
Google Scholar
[27] Park S H, Minegishi T, Lee H J, Oh D C, Ko H J, Chang J H, Yao T 2011 J. Appl. Phys. 110 053520
Google Scholar
[28] Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889
Google Scholar
[29] Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501
Google Scholar
[30] Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237
Google Scholar
[31] Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529
Google Scholar
[32] Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327
Google Scholar
[33] Teng C W, Muth J F, Ozgur U, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979
Google Scholar
[34] Coli G, Bajaj K K 2001 Appl. Phys. Lett. 78 2861
Google Scholar
[35] Ohtomo A, Shiroki R, Ohkubo I, Koinuma H, Kawasaki M 1999 Appl. Phys. Lett. 75 4088
Google Scholar
[36] Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T, Setiawan A 2005 J. Appl. Phys. 98 054911
Google Scholar
[37] Tanaka H, Fujita S, Fujita S 2005 Appl. Phys. Lett. 86 192911
Google Scholar
[38] Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B, Lin Z 2011 Appl. Phys. Lett. 98 221112
Google Scholar
[39] Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H, Shan C X 2009 Appl. Phys. Lett. 95 131113
Google Scholar
[40] Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y, Shen D Z 2014 Opt. Express 22 246
Google Scholar
[41] Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2009 Appl. Phys. Lett. 94 101902
Google Scholar
[42] Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2008 Appl. Phys. Lett. 93 173505
Google Scholar
[43] Kaneko K, Onuma T, Tsumura K, Uchida T, Jinno R, Yamaguchi T, Honda T, Fujita S 2016 Appl. Phys. Express 9 111102
Google Scholar
[44] Onuma T, Ono M, Ishii K, Kaneko K, Yamaguchi T, Fujita S, Honda T 2018 Appl. Phys. Lett. 113 061903
Google Scholar
[45] Kaneko K, Tsumura K, Ishii K, Onuma T, Honda T, Fujita S 2018 J. Electron. Mater. 47 4356
Google Scholar
[46] Wen M C, Lu S A, Chang L, Chou M M C, Ploog K H 2017 J. Cryst. Growth 477 169
Google Scholar
[47] Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103
Google Scholar
[48] Kim W J, Leem J H, Han M S, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104
Google Scholar
[49] Su L X, Zhu Y, Chen M M, Zhang Q L, Su Y Q, Ji X, Wu T Z, Gui X C, Xiang R, Tang Z K 2013 Appl. Phys. Lett. 103 072104
Google Scholar
[50] Jeong T S, Han M S, Kim J H, Bae S J, Youn C J 2007 J. Phys. D-Appl. Phys. 40 370
Google Scholar
[51] Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z, Tang Z K 2012 J. Phys. D-Appl. Phys. 45 455101
Google Scholar
[52] Ye D Q, Mei Z X, Liang H L, Liu Y L, Azarov A, Kuznetsov A, Du X L 2014 J. Phys. D-Appl. Phys. 47 175102
Google Scholar
[53] Park S H, Ahn D 2014 Physica B 441 12
Google Scholar
[54] Su L X, Zhu Y, Zhang Q L, Chen M M, Wu T Z, Gui X C, Pan B C, Xiang R, Tang Z K 2013 Appl. Surf. Sci. 274 341
Google Scholar
[55] Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Pan B C 2014 J. Alloys Compd. 608 197
Google Scholar
[56] Ding K, Ullah M B, Avrutin V, Ozgur U, Morkoc H 2017 Appl. Phys. Lett. 111 182101
Google Scholar
[57] Gorczyca I, Teisseyre H, Suski T, Christensen N E, Svane A 2016 J. Appl. Phys. 120 215704
Google Scholar
[58] Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V, Morkoc H, Ozgur U 2016 J. Appl. Phys. 119 095311
Google Scholar
[59] Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith D J, Morkoc H, Ozgur U 2014 J. Cryst. Growth 402 60
Google Scholar
[60] Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2010 J. Cryst. Growth 312 978
Google Scholar
[61] Toporkov M, Ullah M B, Demchenko D O, Avrutin V, Morkoc H, Ozgur U 2017 J. Cryst. Growth 467 145
Google Scholar
[62] Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I, Ozgur U, Morkoc H 2017 J. Appl. Phys. 121 185704
Google Scholar
[63] Roessler D M, Walker W C 1967 Phys. Rev. 159 733
Google Scholar
[64] Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832
[65] Ashrafi A, Jagadish C 2007 J. Appl. Phys. 102 071101
Google Scholar
[66] Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C, Tang Z K 2014 J. Alloys Compd. 616 505
Google Scholar
[67] Chen M M, Zhu Y, Su L X, Zhang Q L, Chen A Q, Ji X, Xiang R, Gui X C, Wu T Z, Pan B C, Tang Z K 2013 Appl. Phys. Lett. 102 202103
Google Scholar
[68] Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253
Google Scholar
[69] Kohan A F, Ceder G, Morgan D, Van de Walle C G 2000 Phys. Rev. B 61 15019
Google Scholar
[70] Sokol A A, French S A, Bromley S T, Catlow C R A, van Dam H J J, Sherwood P 2007 Faraday Discuss. 134 267
Google Scholar
[71] Lyons J L, Janotti A, Van de Walle C G 2009 Appl. Phys. Lett. 95 252105
Google Scholar
[72] Wang L G, Zunger A 2003 Phys. Rev. Lett. 90 256401
Google Scholar
[73] Duan X M, Stampfl C, Bilek M M M, McKenzie D R 2009 Phys. Rev. B 79 235208
Google Scholar
[74] Urban D F, Korner W, Elsasser C 2016 Phys. Rev. B 94 075140
Google Scholar
[75] Puchala B, Morgan D 2012 Phys. Rev. B 85 195207
Google Scholar
[76] Limpijumnong S, Zhang S B, Wei S H, Park C H 2004 Phys. Rev. Lett. 92 155504
Google Scholar
[77] Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201
Google Scholar
[78] Gai Y Q, Li J B, Li S S, Xia J B, Yan Y F, Wei S H 2009 Phys. Rev. B 80 153201
Google Scholar
[79] Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 AIP Adv. 8 035115
[80] Lautenschlaeger S, Sann J, Volbers N, Meyer B K, Hoffmann A, Haboeck U, Wagner M R 2008 Phys. Rev. B 77 144108
[81] Akasaka S, Nakahara K, Yuji H, Tsukazaki A, Ohtomo A, Kawasaki M 2011 Appl. Phys. Express 4 035701
[82] Kozuka Y, Tsukazaki A, Kawasaki M 2014 Appl. Phys. Rev. 1 011303
[83] Akasaka S, Tsukazaki A, Nakahara K, Ohtomo A, Kawasaki M 2011 Jpn. J. Appl. Phys. 50 080215
[84] Oba F, Choi M, Togo A, Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302
Google Scholar
[85] Ellmer K, Bikowski A 2016 J. Phys. D-Appl. Phys. 49 413002
Google Scholar
[86] McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101
Google Scholar
[87] Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501
Google Scholar
[88] Janotti A, Van de Walle C G 2007 Phys. Rev. B 76 165202
Google Scholar
[89] Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202
Google Scholar
[90] Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824
Google Scholar
[91] Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112
Google Scholar
[92] Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R, Brillson L J 2011 Phys. Rev. B 84 115202
Google Scholar
[93] Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206
Google Scholar
[94] Ton-That C, Weston L, Phillips M R 2012 Phys. Rev. B 86 115205
Google Scholar
[95] Alkauskas A, Pasquarello A 2011 Phys. Rev. B 84 125206
Google Scholar
[96] Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G, Kuznetsov A Y 2012 Phys. Rev. B 86 121203
Google Scholar
[97] Can M M, Shah S I, Doty M F, Haughn C R, Firat T 2012 J. Phys. D-Appl. Phys. 45 195104
Google Scholar
[98] Kim D H, Lee G W, Kim Y C 2012 Solid State Commun. 152 1711
Google Scholar
[99] Travlos A, Boukos N, Chandrinou C, Kwack H S, Dang L S 2009 J. Appl. Phys. 106 104307
Google Scholar
[100] Selim F A, Weber M H, Solodovnikov D, Lynn K G 2007 Phys. Rev. Lett. 99 085502
Google Scholar
[101] Erhart P, Albe K 2006 Appl. Phys. Lett. 88 201918
Google Scholar
[102] Vlasenko L S, Watkins G D 2005 Phys. Rev. B 72 035203
Google Scholar
[103] Liu H Y, Izyumskaya N, Avrutin V 2012 J. Appl. Phys. 112 033706
Google Scholar
[104] Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501
Google Scholar
[105] Xie X H, Li B H, Zhang Z Z, Shen D Z 2017 J. Phys. D-Appl. Phys. 50 325304
Google Scholar
[106] Sanyal D, Roy T K, Chakrabarti M, Dechoudhury S, Bhowmick D, Chakrabarti A 2008 J. Phys.-Condes. Matter 20 045217
Google Scholar
[107] Ono R, Togimitsu T, Sato W 2015 J. Radioanal. Nucl. Chem. 303 1223
Google Scholar
[108] Khan E H, Weber M H, McCluskey M D 2013 Phys. Rev. Lett. 111 017401
Google Scholar
[109] Makkonen I, Korhonen E, Prozheeva V, Tuomisto F 2016 J. Phys.-Condes. Matter 28 224002
Google Scholar
[110] Chakrabarti M, Jana D, Sanyal D 2013 Vacuum 87 16
Google Scholar
[111] Sarkar A, Chakrabarti M, Ray S K, Bhowmick D, Sanyal D 2011 J. Phys.-Condes. Matter 23 155801
Google Scholar
[112] Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 205305
Google Scholar
[113] Chen Z Q, Betsuyaku K, Kawasuso A 2008 Phys. Rev. B 77 113204
Google Scholar
[114] Erdem E 2017 Nanoscale 9 10983
Google Scholar
[115] Lambrecht W R L, Boonchun A 2013 Phys. Rev. B 87 195207
Google Scholar
[116] Parashar S K S, Murty B S, Repp S, Weber S, Erdem E 2012 J. Appl. Phys. 111 113712
Google Scholar
[117] Vlasenko L S 2010 Appl. Magn. Reson. 39 103
Google Scholar
[118] Vlasenko L S 2009 Physica B 404 4774
Google Scholar
[119] Zheng H, Weismann A, Berndt R 2013 Phys. Rev. Lett. 110 226101
Google Scholar
[120] Xu H, Dong L, Shi X Q, Van Hove M A, Ho W K, Lin N, Wu H S, Tong S Y 2014 Phys. Rev. B 89 235403
Google Scholar
[121] Stavale F, Nilius N, Freund H J 2013 J. Phys. Chem. Lett. 4 3972
Google Scholar
[122] Dulub O, Boatner L A, Diebold U 2002 Surf. Sci. 519 201
Google Scholar
[123] Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga Perez J, Munoz-Sanjose V 2006 J. Appl. Phys. 99 053516
Google Scholar
[124] Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943
Google Scholar
[125] Dong Y F, Tuomisto F, Svensson B G, Kuznetsov A Y, Brillson L J 2010 Phys. Rev. B 81 081201
Google Scholar
[126] Reshchikov M A 2014 J. Appl. Phys. 115 012010
Google Scholar
[127] Zhu L C, Lockrey M, Phillips M R, Cuong T T 2018 Phys. Status Solidi A-Appl. Mat. 215 1800389
Google Scholar
[128] Wu X L, Siu G G, Fu C L, Ong H C 2001 Appl. Phys. Lett. 78 2285
Google Scholar
[129] Liu X Y, Shan C X, Zhu H, Li B H, Jiang M M, Yu S F, Shen D Z 2015 Sci. Rep. 5 13641
Google Scholar
[130] Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z, Choy K L 2011 J. Mater. Chem. 21 2848
Google Scholar
[131] McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W, Ha S 2015 J. Appl. Phys. 117 112802
Google Scholar
[132] Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874
Google Scholar
[133] Reynolds J G, Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058
[134] Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nat. Mater. 4 42
[135] Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K 2006 Appl. Phys. Lett. 88 031911
Google Scholar
[136] Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106
Google Scholar
[137] Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J, Liu J L 2011 Nat. Nanotechnol. 6 506
Google Scholar
[138] Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 J. Phys. D-Appl. Phys. 51 225104
Google Scholar
[139] Stehr J E, Wang X J, Filippov S, Pearton S J, Ivanov I G, Chen W M, Buyanova I A 2013 J. Appl. Phys. 113 103509
Google Scholar
[140] Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207
Google Scholar
[141] Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A 2012 J. Am. Chem. Soc. 134 464
Google Scholar
[142] Ye Z Z, He H P, Jiang L 2018 Nano Energy 52 527
Google Scholar
[143] Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C, Tang Z K 2016 Adv. Funct. Mater. 26 3696
Google Scholar
[144] Sun F, Shan C X, Li B H, Zhang Z Z, Shen D Z, Zhang Z Y, Fan D 2011 Opt. Lett. 36 499
Google Scholar
[145] Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106
Google Scholar
计量
- 文章访问数: 14546
- PDF下载量: 312
- 被引次数: 0