搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Au-Si60-Au分子结电子输运性质的理论计算

柳福提 程艳 陈向荣 程晓洪 曾志强

引用本文:
Citation:

Au-Si60-Au分子结电子输运性质的理论计算

柳福提, 程艳, 陈向荣, 程晓洪, 曾志强

Theoretical calculation of electron transport properties of the Au-Si60-Au molecular junctions

Liu Fu-Ti, Cheng Yan, Chen Xiang-Rong, Cheng Xiao-Hong, Zeng Zhi-Qiang
PDF
导出引用
  • 运用密度泛函理论对Si60团簇的结构进行几何优化,得到基态结构是一个直径为1.131 nm,平均键长为0.239 nm,分子最低未占据轨道与最高占据轨道能量差即能隙值为0.72 eV,具有C1点群的空心笼状结构. 然后把它与两半无限的Au(100)-44电极相连构成Au-Si60-Au三明治结构分子结点,运用密度泛函理论结合非平衡格林函数的方法对其电子输运性质进行了第一性原理计算. 当两电极的距离为1.74 nm时,分子结点的平衡电导为1.93 G0 (G0=2e2/h),然后在-2.02.0 V的电压范围内,计算了不同电压下的电导与电流,得到其Ⅰ-Ⅴ曲线成近线性关系,从分子前线轨道与透射谱分析了Si60分子的电子输运特性,讨论了电荷转移量与电导之间的关系.
    The ground structure of Si60 clusters, which was obtained by optimization when using the density functional theory method, is a fullerene structure with C1 point group, a diameter 1.131 nm, the average bond length 0.239 nm, and the difference between the energies of the lowest unoccupied molecular orbital and the highest occupied molecular orbital is 0.72 eV. A Si60 cluster with optimized structure is sandwiched between two semi-infinite Au(100)-44 electrodes, and the Au-Si60-Au molecular junctions is constructed, whose electron transport properties is investigated with a combination of density functional theory and non-equilibrium Green's function method. When the distance between the two electrodes is 1.74 nm, the equilibrium conductance of the junctions is 1.93 G0 (G0=2e2/h). In the range of voltage from -2.02.0 V, we have calculated the current and conductance under different voltages, and find that the Ⅰ-Ⅴ curve of the junctions show linear characteristics. We also analyze the properties of transport from transmission and frontier molecular orbitals, and discuss the relationship of transfer charge with conductance.
    • 基金项目: 国家自然科学基金(批准号:11174214,11204192)、四川省教育厅科研基金(批准号:13ZB0207)和宜宾学院重点科研基金(批准号:2013YY05)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11174214, 11204192), the Research Project of Education Department in Sichuan Province, China (Grant No. 13ZB0207), and the Scientific Research Project of Yibin University, China (Grant No. 2013YY05).
    [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Lu Z Y, Wang C Z, Ho K M 2000 Phys. Rev. B 61 2329

    [3]
    [4]
    [5]

    Zhu X, Zeng X C 2003 J. Chem. Phys. 118 3558

    [6]

    Hudgins R R, Imai M, Jarrold M F, Dugourd P 1999 J. Chem. Phys. 111 7865

    [7]
    [8]

    Vasiliev I, ğt S, Chelikowsky J R 1997 Phys. Rev. Lett. 78 4805

    [9]
    [10]
    [11]

    Jarrold M F 1991 Science 252 1085

    [12]
    [13]

    Jarrold M F, Constant V A 1991 Phys. Rev. Lett. 67 2994

    [14]
    [15]

    Li Y L, Luo C L 2002 Acta Phys. Sin. 51 2589 (in Chinese)[李延龄, 罗成林 2002 51 2589]

    [16]

    Gan L H, Shu C Y, Wang C R 2006 Chemical Journal of Chinese Universities 27 1106 (in Chinese)[甘利华, 舒春英, 王春儒 2006 高等学校化学学报 27 1106]

    [17]
    [18]

    Nagase S, Kobayashi K 1991 Chem. Phys. Lett. 187 291

    [19]
    [20]
    [21]

    Sun Q, Wang Q, Jena P, Rao B K 2003 Phys. Rev. Lett. 90 135503

    [22]

    Piqueras M C, Crespo R, Orti E, Tomas F 1993 Chem. Phys. Lett. 213 509

    [23]
    [24]
    [25]

    Jug K, Krack M 1993 Chem. Phys. 173 439

    [26]

    Menon M, Subbaswamy K R 1994 Chem. Phys. Lett. 219 219

    [27]
    [28]

    Chen Z, Jiao H, Seifert G, Seifert G, Horn A H, Yu D, Clark T, Thiel W, Von Rague Schleyer P 2003 J. Comput. Chem. 24 948

    [29]
    [30]

    Khan F S, Broughton J Q 1991 Phys. Rev. B 43 11754

    [31]
    [32]

    Xu B, Tao N J 2003 Science 301 1221

    [33]
    [34]

    Xu X G, Xu G Jie, Cao J C, Zhang C 2011 Chin. Phys. B 20 027201

    [35]
    [36]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [37]
    [38]

    Liu F T, Cheng Y, Chen X H, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 067302

    [39]
    [40]

    Liu F T, Cheng Y, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 107303

    [41]
    [42]

    Huang B, Zhang J X, Li R, Shen Z Y, Hou S M, Zhao X Y, Xue Z Q, Wu Q D 2006 Acta Phys. Chim. Sin. 22 161 (in Chinese)[黄飙, 张家兴, 李锐, 申自勇, 侯士敏, 赵兴钰, 薛增泉, 吴全德 2006 物理化学学报 22 161]

    [43]
    [44]

    Rocha A R, Garcia-Suarez V M, Bailey S, Lanbert C, Ferrer J, Sanvito S 2006 Phys. Rev. B 73 085414

    [45]
    [46]
    [47]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Canbridge: Cambridge University Press)

    [48]

    Fisher D S, Lee P A 1981 Phys. Rev. B 23 6851

    [49]
    [50]

    Rungger I, Sanvito S 2008 Phys. Rev. B 78 035407

    [51]
    [52]
    [53]

    Ke S H, Baranger H U, Yang W T 2005 J. Chem. Phys. 122 074704

    [54]
    [55]

    Wu Q H, Zhao P, Liu D S 2014 Acta Phys. Chem. Sin. 30 53 (in Chinese)[吴秋华, 赵朋, 刘德胜. 2014 物理化学学报 30 53]

    [56]

    Perdew J P 1986 Phys. Rev. B 33 8822

    [57]
    [58]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [59]
    [60]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [61]
    [62]
    [63]

    Dai Z X, Zheng X H, Shi X Q, Zeng Z 2005 Phys. Rev. B 72 205408

    [64]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504 (in Chinese)[柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 62 140504]

    [65]
  • [1]

    Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E 1985 Nature 318 162

    [2]

    Lu Z Y, Wang C Z, Ho K M 2000 Phys. Rev. B 61 2329

    [3]
    [4]
    [5]

    Zhu X, Zeng X C 2003 J. Chem. Phys. 118 3558

    [6]

    Hudgins R R, Imai M, Jarrold M F, Dugourd P 1999 J. Chem. Phys. 111 7865

    [7]
    [8]

    Vasiliev I, ğt S, Chelikowsky J R 1997 Phys. Rev. Lett. 78 4805

    [9]
    [10]
    [11]

    Jarrold M F 1991 Science 252 1085

    [12]
    [13]

    Jarrold M F, Constant V A 1991 Phys. Rev. Lett. 67 2994

    [14]
    [15]

    Li Y L, Luo C L 2002 Acta Phys. Sin. 51 2589 (in Chinese)[李延龄, 罗成林 2002 51 2589]

    [16]

    Gan L H, Shu C Y, Wang C R 2006 Chemical Journal of Chinese Universities 27 1106 (in Chinese)[甘利华, 舒春英, 王春儒 2006 高等学校化学学报 27 1106]

    [17]
    [18]

    Nagase S, Kobayashi K 1991 Chem. Phys. Lett. 187 291

    [19]
    [20]
    [21]

    Sun Q, Wang Q, Jena P, Rao B K 2003 Phys. Rev. Lett. 90 135503

    [22]

    Piqueras M C, Crespo R, Orti E, Tomas F 1993 Chem. Phys. Lett. 213 509

    [23]
    [24]
    [25]

    Jug K, Krack M 1993 Chem. Phys. 173 439

    [26]

    Menon M, Subbaswamy K R 1994 Chem. Phys. Lett. 219 219

    [27]
    [28]

    Chen Z, Jiao H, Seifert G, Seifert G, Horn A H, Yu D, Clark T, Thiel W, Von Rague Schleyer P 2003 J. Comput. Chem. 24 948

    [29]
    [30]

    Khan F S, Broughton J Q 1991 Phys. Rev. B 43 11754

    [31]
    [32]

    Xu B, Tao N J 2003 Science 301 1221

    [33]
    [34]

    Xu X G, Xu G Jie, Cao J C, Zhang C 2011 Chin. Phys. B 20 027201

    [35]
    [36]

    Gu C Z, Wang Q, Li J J, Xia K 2013 Chin. Phys. B 22 098107

    [37]
    [38]

    Liu F T, Cheng Y, Chen X H, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 067302

    [39]
    [40]

    Liu F T, Cheng Y, Yang F B, Chen X R 2013 Chin. Phys. Lett. 30 107303

    [41]
    [42]

    Huang B, Zhang J X, Li R, Shen Z Y, Hou S M, Zhao X Y, Xue Z Q, Wu Q D 2006 Acta Phys. Chim. Sin. 22 161 (in Chinese)[黄飙, 张家兴, 李锐, 申自勇, 侯士敏, 赵兴钰, 薛增泉, 吴全德 2006 物理化学学报 22 161]

    [43]
    [44]

    Rocha A R, Garcia-Suarez V M, Bailey S, Lanbert C, Ferrer J, Sanvito S 2006 Phys. Rev. B 73 085414

    [45]
    [46]
    [47]

    Datta S 1995 Electronic Transport in Mesoscopic Systems (Canbridge: Cambridge University Press)

    [48]

    Fisher D S, Lee P A 1981 Phys. Rev. B 23 6851

    [49]
    [50]

    Rungger I, Sanvito S 2008 Phys. Rev. B 78 035407

    [51]
    [52]
    [53]

    Ke S H, Baranger H U, Yang W T 2005 J. Chem. Phys. 122 074704

    [54]
    [55]

    Wu Q H, Zhao P, Liu D S 2014 Acta Phys. Chem. Sin. 30 53 (in Chinese)[吴秋华, 赵朋, 刘德胜. 2014 物理化学学报 30 53]

    [56]

    Perdew J P 1986 Phys. Rev. B 33 8822

    [57]
    [58]

    Troullier N, Martins J L 1991 Phys. Rev. B 43 1993

    [59]
    [60]

    Taylor J, Guo H, Wang J 2001 Phys. Rev. B 63 121104

    [61]
    [62]
    [63]

    Dai Z X, Zheng X H, Shi X Q, Zeng Z 2005 Phys. Rev. B 72 205408

    [64]

    Liu F T, Cheng Y, Yang F B, Cheng X H, Chen X R 2013 Acta Phys. Sin. 62 140504 (in Chinese)[柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣 2013 62 140504]

    [65]
  • [1] 周展辉, 李群, 贺小敏. AlN/β-Ga2O3异质结电子输运机制.  , 2023, 72(2): 028501. doi: 10.7498/aps.72.20221545
    [2] 邢海英, 张子涵, 吴文静, 郭志英, 茹金豆. 石墨烯电极弯折对2-苯基吡啶分子器件负微分电阻特性的调控和机理.  , 2023, 72(3): 038502. doi: 10.7498/aps.72.20221212
    [3] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 张婷婷, 刘洋, 胡振洋, 唐小洁. 基于石墨烯电极的蒽醌分子器件开关特性.  , 2021, 70(3): 038501. doi: 10.7498/aps.70.20201095
    [4] 贺艳斌, 白熙. 一维线性非共轭石墨烯基(CH2)n分子链的电子输运.  , 2021, 70(4): 046201. doi: 10.7498/aps.70.20200953
    [5] 梁锦涛, 颜晓红, 张影, 肖杨. 硼或氮掺杂的锯齿型石墨烯纳米带的非共线磁序与电子输运性质.  , 2019, 68(2): 027101. doi: 10.7498/aps.68.20181754
    [6] 崔焱, 夏蔡娟, 苏耀恒, 张博群, 陈爱民, 杨爱云, 张婷婷, 刘洋. 基于石墨烯电极的齐聚苯乙炔分子器件的整流特性.  , 2018, 67(11): 118501. doi: 10.7498/aps.67.20180088
    [7] 柳福提, 张淑华, 程艳, 陈向荣, 程晓洪. (GaAs)n(n=1-4)原子链电子输运性质的理论计算.  , 2016, 65(10): 106201. doi: 10.7498/aps.65.106201
    [8] 陈晓彬, 段文晖. 低维纳米材料量子热输运与自旋热电性质 ——非平衡格林函数方法的应用.  , 2015, 64(18): 186302. doi: 10.7498/aps.64.186302
    [9] 黄耀清, 郝成红, 郑继明, 任兆玉. 硅团簇自旋电子器件的理论研究.  , 2013, 62(8): 083601. doi: 10.7498/aps.62.083601
    [10] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Si4团簇电子输运性质的第一性原理计算.  , 2013, 62(14): 140504. doi: 10.7498/aps.62.140504
    [11] 柳福提, 程艳, 羊富彬, 程晓洪, 陈向荣. Au-Si-Au结点电子输运性质的第一性原理计算.  , 2013, 62(10): 107401. doi: 10.7498/aps.62.107401
    [12] 胡飞, 段玲, 丁建文. 锯齿型石墨纳米带叠层复合结的电子输运.  , 2012, 61(7): 077201. doi: 10.7498/aps.61.077201
    [13] 范志强, 谢芳. 硼氮原子取代掺杂对分子器件负微分电阻效应的影响.  , 2012, 61(7): 077303. doi: 10.7498/aps.61.077303
    [14] 潘金波, 张振华, 邱明, 郭超. 分子整流器整流特性的键桥调控效应.  , 2011, 60(3): 037302. doi: 10.7498/aps.60.037302
    [15] 郭超, 张振华, 潘金波, 张俊俊. D-B-A分子整流特性的端基效应.  , 2011, 60(11): 117303. doi: 10.7498/aps.60.117303
    [16] 赵佩, 郑继明, 陈有为, 郭平, 任兆玉. 单壁碳纳米管吸附氧分子的电子输运性质理论研究.  , 2011, 60(6): 068501. doi: 10.7498/aps.60.068501
    [17] 高虹, 朱卫华, 唐春梅, 耿芳芳, 姚长达, 徐云玲, 邓开明. 内掺氮富勒烯N2@C60的几何结构和电子性质的密度泛函计算研究.  , 2010, 59(3): 1707-1711. doi: 10.7498/aps.59.1707
    [18] 邱明, 张振华, 邓小清. 碳链输运对基团吸附的敏感性分析.  , 2010, 59(6): 4162-4169. doi: 10.7498/aps.59.4162
    [19] 郑新亮, 郑继明, 任兆玉, 郭平, 田进寿, 白晋涛. 钽硅团簇电子输运性质的第一性原理研究.  , 2009, 58(8): 5709-5715. doi: 10.7498/aps.58.5709
    [20] 牛秀明, 齐元华. 分子结点电子输运性质的理论研究.  , 2008, 57(11): 6926-6931. doi: 10.7498/aps.57.6926
计量
  • 文章访问数:  6828
  • PDF下载量:  572
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-03-31
  • 修回日期:  2014-05-10
  • 刊出日期:  2014-09-05

/

返回文章
返回
Baidu
map