Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Point defects: key issues for II-oxides wide-bandgap semiconductors development

Xie Xiu-Hua Li Bing-Hui Zhang Zhen-Zhong Liu Lei Liu Ke-Wei Shan Chong-Xin Shen De-Zhen

Citation:

Point defects: key issues for II-oxides wide-bandgap semiconductors development

Xie Xiu-Hua, Li Bing-Hui, Zhang Zhen-Zhong, Liu Lei, Liu Ke-Wei, Shan Chong-Xin, Shen De-Zhen
PDF
HTML
Get Citation
  • II-oxides wide-bandgap semiconductor, including the beryllium oxide (BeO), magnesium oxide (MgO), zinc oxide (ZnO), have large exciton binding energy (ZnO 60 meV, MgO 80 meV), high optical gain (ZnO 300 cm–1) and wide tunable band gap (3.37 eV ZnO, MgO 7.8 eV, BeO 10.6 eV), which are the advantages of achieving low-threshold laser devices in the ultraviolet wavelength. It is also one of the important candidates to replace the traditional gas arc lamp (such as mercury lamp, deuterium lamp, excimer lamp, xenon lamp etc.) as the source of deep ultraviolet and even vacuum ultraviolet. Although, during the past decades, the ZnO-based pn homojunction devices have made great progress in the near-UV electroluminescence, but as the band gap broadens, the acceptor (or donor) ionization energy becomes higher (On the order of hundreds meV), which causing the room temperature equivalent thermal energy (26 meV) cannot make the impurities ionizing effectively. In addition, the self-compensation effect in the doping process further weakens the carrier yield. These above drawbacks have become the bottleneck that hinders II-oxides wide-bandgap semiconductor from achieving ultraviolet laser devices and expanding to shorter wavelengths, and are also a common problem faced by other wide-bandgap semiconductor materials. The regulation of the electrical and luminescent properties of materials often depends on the control of critical defect states. The rich point defects and their combination types make the II-oxides wide-bandgap semiconductors an important platform for studying defect physics. For the identification and characterization of specific point defects, it is expected to discover and further construct shallower defect states, which will provide a basis for the regulation of electrical performance. In this paper, recent research results of II-oxides wide-bandgap semiconductors will be described from three aspects: high-quality epitaxial growth, impurity and point defects, p-type doping and ultraviolet electroluminescence. Through the overview of related research works, II-oxides wide-bandgap semiconductors are clarified as deep ultraviolet light sources materials. Meanwhile, indicates that the key to the regulation of electrical performance in the future lies in the regulation of point defects.
      Corresponding author: Shen De-Zhen, shendz@ciomp.ac.cn
    • Funds: Project supported by the National Key Scientific Instrument and Equipment Development Project of China (Grant No. 11727902) and the Excellent Young Scientists Fund of Jilin Province, China (Grant No. 20190103042JH).
    [1]

    Prakash V, Agarwal A, Mussada E K 2019 Silicon 11 1617Google Scholar

    [2]

    Neubert M, Rudolph P 2001 Prog. Cryst. Growth Charact. Mater. 43 119Google Scholar

    [3]

    Mullin J B 2004 J. Cryst. Growth 264 578Google Scholar

    [4]

    Nakamura S 2015 Rev. Mod. Phys. 87 1139Google Scholar

    [5]

    Akasaki I 2015 Rev. Mod. Phys. 87 1119Google Scholar

    [6]

    Amano H 2015 Rev. Mod. Phys. 87 1133Google Scholar

    [7]

    Liang Y H, Towe E 2018 Appl. Phys. Rev. 5 011107Google Scholar

    [8]

    Walsh A, Zunger A 2017 Nat. Mater. 16 964Google Scholar

    [9]

    Chen Y F, Ko H J, Hong S K, Yao T, Segawa Y 2000 J. Cryst. Growth 214 87Google Scholar

    [10]

    Chen Y F, Ko H J, Hong S K, Yao T 2000 Appl. Phys. Lett. 76 559Google Scholar

    [11]

    Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H 2000 Appl. Phys. Lett. 77 1801Google Scholar

    [12]

    Fons P, Iwata K, Niki S, Yamada A, Matsubara K, Watanabe M 2000 J. Cryst. Growth 209 532Google Scholar

    [13]

    Liu J S, Shan C X, Wang S P, Sun F, Yao B, Shen D Z 2010 J. Cryst. Growth 312 2861Google Scholar

    [14]

    Kato H, Miyamoto K, Sano M, Yao T 2004 Appl. Phys. Lett. 84 4562Google Scholar

    [15]

    Hong S K, Hanada T, Ko H J, Chen Y F, Yao T, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M 2002 Phys. Rev. B 65 115331Google Scholar

    [16]

    Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T, Lee J W, Lee J Y 2007 Appl. Phys. Lett. 90 201907Google Scholar

    [17]

    Xie X H, Li B H, Zhang Z Z, Wang S P, Shen D Z 2018 Sci. Rep. 8 17020Google Scholar

    [18]

    Helbig R 1972 J. Cryst. Growth. 15 25Google Scholar

    [19]

    Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G, Harsch W C 1998 Solid State Commun. 105 399Google Scholar

    [20]

    Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T 2004 J. Cryst. Growth 260 166Google Scholar

    [21]

    Maeda K, Sato M, Niikura I, Fukuda T 2005 Semicond. Sci. Technol. 20 S49Google Scholar

    [22]

    Ehrentraut D, Maeda K, Kano M, Fujii K, Fukuda T 2011 J. Cryst. Growth 320 18Google Scholar

    [23]

    Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J, Krost A 2007 Appl. Phys. Lett. 90 042103Google Scholar

    [24]

    Takamizu D, Nishimoto Y, Akasaka S, Yuji H, Tamura K, Nakahara K, Onuma T, Tanabe T, Takasu H, Kawasaki M, Chichibu S F 2008 J. Appl. Phys. 103 063502Google Scholar

    [25]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 2-Lett. 42 L1002Google Scholar

    [26]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42 2241Google Scholar

    [27]

    Park S H, Minegishi T, Lee H J, Oh D C, Ko H J, Chang J H, Yao T 2011 J. Appl. Phys. 110 053520Google Scholar

    [28]

    Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889Google Scholar

    [29]

    Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501Google Scholar

    [30]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237Google Scholar

    [31]

    Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529Google Scholar

    [32]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327Google Scholar

    [33]

    Teng C W, Muth J F, Ozgur U, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979Google Scholar

    [34]

    Coli G, Bajaj K K 2001 Appl. Phys. Lett. 78 2861Google Scholar

    [35]

    Ohtomo A, Shiroki R, Ohkubo I, Koinuma H, Kawasaki M 1999 Appl. Phys. Lett. 75 4088Google Scholar

    [36]

    Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T, Setiawan A 2005 J. Appl. Phys. 98 054911Google Scholar

    [37]

    Tanaka H, Fujita S, Fujita S 2005 Appl. Phys. Lett. 86 192911Google Scholar

    [38]

    Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B, Lin Z 2011 Appl. Phys. Lett. 98 221112Google Scholar

    [39]

    Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H, Shan C X 2009 Appl. Phys. Lett. 95 131113Google Scholar

    [40]

    Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y, Shen D Z 2014 Opt. Express 22 246Google Scholar

    [41]

    Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2009 Appl. Phys. Lett. 94 101902Google Scholar

    [42]

    Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2008 Appl. Phys. Lett. 93 173505Google Scholar

    [43]

    Kaneko K, Onuma T, Tsumura K, Uchida T, Jinno R, Yamaguchi T, Honda T, Fujita S 2016 Appl. Phys. Express 9 111102Google Scholar

    [44]

    Onuma T, Ono M, Ishii K, Kaneko K, Yamaguchi T, Fujita S, Honda T 2018 Appl. Phys. Lett. 113 061903Google Scholar

    [45]

    Kaneko K, Tsumura K, Ishii K, Onuma T, Honda T, Fujita S 2018 J. Electron. Mater. 47 4356Google Scholar

    [46]

    Wen M C, Lu S A, Chang L, Chou M M C, Ploog K H 2017 J. Cryst. Growth 477 169Google Scholar

    [47]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103Google Scholar

    [48]

    Kim W J, Leem J H, Han M S, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104Google Scholar

    [49]

    Su L X, Zhu Y, Chen M M, Zhang Q L, Su Y Q, Ji X, Wu T Z, Gui X C, Xiang R, Tang Z K 2013 Appl. Phys. Lett. 103 072104Google Scholar

    [50]

    Jeong T S, Han M S, Kim J H, Bae S J, Youn C J 2007 J. Phys. D-Appl. Phys. 40 370Google Scholar

    [51]

    Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z, Tang Z K 2012 J. Phys. D-Appl. Phys. 45 455101Google Scholar

    [52]

    Ye D Q, Mei Z X, Liang H L, Liu Y L, Azarov A, Kuznetsov A, Du X L 2014 J. Phys. D-Appl. Phys. 47 175102Google Scholar

    [53]

    Park S H, Ahn D 2014 Physica B 441 12Google Scholar

    [54]

    Su L X, Zhu Y, Zhang Q L, Chen M M, Wu T Z, Gui X C, Pan B C, Xiang R, Tang Z K 2013 Appl. Surf. Sci. 274 341Google Scholar

    [55]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Pan B C 2014 J. Alloys Compd. 608 197Google Scholar

    [56]

    Ding K, Ullah M B, Avrutin V, Ozgur U, Morkoc H 2017 Appl. Phys. Lett. 111 182101Google Scholar

    [57]

    Gorczyca I, Teisseyre H, Suski T, Christensen N E, Svane A 2016 J. Appl. Phys. 120 215704Google Scholar

    [58]

    Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V, Morkoc H, Ozgur U 2016 J. Appl. Phys. 119 095311Google Scholar

    [59]

    Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith D J, Morkoc H, Ozgur U 2014 J. Cryst. Growth 402 60Google Scholar

    [60]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2010 J. Cryst. Growth 312 978Google Scholar

    [61]

    Toporkov M, Ullah M B, Demchenko D O, Avrutin V, Morkoc H, Ozgur U 2017 J. Cryst. Growth 467 145Google Scholar

    [62]

    Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I, Ozgur U, Morkoc H 2017 J. Appl. Phys. 121 185704Google Scholar

    [63]

    Roessler D M, Walker W C 1967 Phys. Rev. 159 733Google Scholar

    [64]

    Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832

    [65]

    Ashrafi A, Jagadish C 2007 J. Appl. Phys. 102 071101Google Scholar

    [66]

    Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C, Tang Z K 2014 J. Alloys Compd. 616 505Google Scholar

    [67]

    Chen M M, Zhu Y, Su L X, Zhang Q L, Chen A Q, Ji X, Xiang R, Gui X C, Wu T Z, Pan B C, Tang Z K 2013 Appl. Phys. Lett. 102 202103Google Scholar

    [68]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [69]

    Kohan A F, Ceder G, Morgan D, Van de Walle C G 2000 Phys. Rev. B 61 15019Google Scholar

    [70]

    Sokol A A, French S A, Bromley S T, Catlow C R A, van Dam H J J, Sherwood P 2007 Faraday Discuss. 134 267Google Scholar

    [71]

    Lyons J L, Janotti A, Van de Walle C G 2009 Appl. Phys. Lett. 95 252105Google Scholar

    [72]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 90 256401Google Scholar

    [73]

    Duan X M, Stampfl C, Bilek M M M, McKenzie D R 2009 Phys. Rev. B 79 235208Google Scholar

    [74]

    Urban D F, Korner W, Elsasser C 2016 Phys. Rev. B 94 075140Google Scholar

    [75]

    Puchala B, Morgan D 2012 Phys. Rev. B 85 195207Google Scholar

    [76]

    Limpijumnong S, Zhang S B, Wei S H, Park C H 2004 Phys. Rev. Lett. 92 155504Google Scholar

    [77]

    Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201Google Scholar

    [78]

    Gai Y Q, Li J B, Li S S, Xia J B, Yan Y F, Wei S H 2009 Phys. Rev. B 80 153201Google Scholar

    [79]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 AIP Adv. 8 035115

    [80]

    Lautenschlaeger S, Sann J, Volbers N, Meyer B K, Hoffmann A, Haboeck U, Wagner M R 2008 Phys. Rev. B 77 144108

    [81]

    Akasaka S, Nakahara K, Yuji H, Tsukazaki A, Ohtomo A, Kawasaki M 2011 Appl. Phys. Express 4 035701

    [82]

    Kozuka Y, Tsukazaki A, Kawasaki M 2014 Appl. Phys. Rev. 1 011303

    [83]

    Akasaka S, Tsukazaki A, Nakahara K, Ohtomo A, Kawasaki M 2011 Jpn. J. Appl. Phys. 50 080215

    [84]

    Oba F, Choi M, Togo A, Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302Google Scholar

    [85]

    Ellmer K, Bikowski A 2016 J. Phys. D-Appl. Phys. 49 413002Google Scholar

    [86]

    McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101Google Scholar

    [87]

    Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501Google Scholar

    [88]

    Janotti A, Van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [89]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202Google Scholar

    [90]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824Google Scholar

    [91]

    Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112Google Scholar

    [92]

    Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R, Brillson L J 2011 Phys. Rev. B 84 115202Google Scholar

    [93]

    Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206Google Scholar

    [94]

    Ton-That C, Weston L, Phillips M R 2012 Phys. Rev. B 86 115205Google Scholar

    [95]

    Alkauskas A, Pasquarello A 2011 Phys. Rev. B 84 125206Google Scholar

    [96]

    Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G, Kuznetsov A Y 2012 Phys. Rev. B 86 121203Google Scholar

    [97]

    Can M M, Shah S I, Doty M F, Haughn C R, Firat T 2012 J. Phys. D-Appl. Phys. 45 195104Google Scholar

    [98]

    Kim D H, Lee G W, Kim Y C 2012 Solid State Commun. 152 1711Google Scholar

    [99]

    Travlos A, Boukos N, Chandrinou C, Kwack H S, Dang L S 2009 J. Appl. Phys. 106 104307Google Scholar

    [100]

    Selim F A, Weber M H, Solodovnikov D, Lynn K G 2007 Phys. Rev. Lett. 99 085502Google Scholar

    [101]

    Erhart P, Albe K 2006 Appl. Phys. Lett. 88 201918Google Scholar

    [102]

    Vlasenko L S, Watkins G D 2005 Phys. Rev. B 72 035203Google Scholar

    [103]

    Liu H Y, Izyumskaya N, Avrutin V 2012 J. Appl. Phys. 112 033706Google Scholar

    [104]

    Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501Google Scholar

    [105]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2017 J. Phys. D-Appl. Phys. 50 325304Google Scholar

    [106]

    Sanyal D, Roy T K, Chakrabarti M, Dechoudhury S, Bhowmick D, Chakrabarti A 2008 J. Phys.-Condes. Matter 20 045217Google Scholar

    [107]

    Ono R, Togimitsu T, Sato W 2015 J. Radioanal. Nucl. Chem. 303 1223Google Scholar

    [108]

    Khan E H, Weber M H, McCluskey M D 2013 Phys. Rev. Lett. 111 017401Google Scholar

    [109]

    Makkonen I, Korhonen E, Prozheeva V, Tuomisto F 2016 J. Phys.-Condes. Matter 28 224002Google Scholar

    [110]

    Chakrabarti M, Jana D, Sanyal D 2013 Vacuum 87 16Google Scholar

    [111]

    Sarkar A, Chakrabarti M, Ray S K, Bhowmick D, Sanyal D 2011 J. Phys.-Condes. Matter 23 155801Google Scholar

    [112]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 205305Google Scholar

    [113]

    Chen Z Q, Betsuyaku K, Kawasuso A 2008 Phys. Rev. B 77 113204Google Scholar

    [114]

    Erdem E 2017 Nanoscale 9 10983Google Scholar

    [115]

    Lambrecht W R L, Boonchun A 2013 Phys. Rev. B 87 195207Google Scholar

    [116]

    Parashar S K S, Murty B S, Repp S, Weber S, Erdem E 2012 J. Appl. Phys. 111 113712Google Scholar

    [117]

    Vlasenko L S 2010 Appl. Magn. Reson. 39 103Google Scholar

    [118]

    Vlasenko L S 2009 Physica B 404 4774Google Scholar

    [119]

    Zheng H, Weismann A, Berndt R 2013 Phys. Rev. Lett. 110 226101Google Scholar

    [120]

    Xu H, Dong L, Shi X Q, Van Hove M A, Ho W K, Lin N, Wu H S, Tong S Y 2014 Phys. Rev. B 89 235403Google Scholar

    [121]

    Stavale F, Nilius N, Freund H J 2013 J. Phys. Chem. Lett. 4 3972Google Scholar

    [122]

    Dulub O, Boatner L A, Diebold U 2002 Surf. Sci. 519 201Google Scholar

    [123]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga Perez J, Munoz-Sanjose V 2006 J. Appl. Phys. 99 053516Google Scholar

    [124]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943Google Scholar

    [125]

    Dong Y F, Tuomisto F, Svensson B G, Kuznetsov A Y, Brillson L J 2010 Phys. Rev. B 81 081201Google Scholar

    [126]

    Reshchikov M A 2014 J. Appl. Phys. 115 012010Google Scholar

    [127]

    Zhu L C, Lockrey M, Phillips M R, Cuong T T 2018 Phys. Status Solidi A-Appl. Mat. 215 1800389Google Scholar

    [128]

    Wu X L, Siu G G, Fu C L, Ong H C 2001 Appl. Phys. Lett. 78 2285Google Scholar

    [129]

    Liu X Y, Shan C X, Zhu H, Li B H, Jiang M M, Yu S F, Shen D Z 2015 Sci. Rep. 5 13641Google Scholar

    [130]

    Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z, Choy K L 2011 J. Mater. Chem. 21 2848Google Scholar

    [131]

    McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W, Ha S 2015 J. Appl. Phys. 117 112802Google Scholar

    [132]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874Google Scholar

    [133]

    Reynolds J G, Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058

    [134]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nat. Mater. 4 42

    [135]

    Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K 2006 Appl. Phys. Lett. 88 031911Google Scholar

    [136]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [137]

    Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J, Liu J L 2011 Nat. Nanotechnol. 6 506Google Scholar

    [138]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 J. Phys. D-Appl. Phys. 51 225104Google Scholar

    [139]

    Stehr J E, Wang X J, Filippov S, Pearton S J, Ivanov I G, Chen W M, Buyanova I A 2013 J. Appl. Phys. 113 103509Google Scholar

    [140]

    Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207Google Scholar

    [141]

    Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A 2012 J. Am. Chem. Soc. 134 464Google Scholar

    [142]

    Ye Z Z, He H P, Jiang L 2018 Nano Energy 52 527Google Scholar

    [143]

    Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C, Tang Z K 2016 Adv. Funct. Mater. 26 3696Google Scholar

    [144]

    Sun F, Shan C X, Li B H, Zhang Z Z, Shen D Z, Zhang Z Y, Fan D 2011 Opt. Lett. 36 499Google Scholar

    [145]

    Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106Google Scholar

  • 图 1  ZnO外延生长过程中缓冲层的RHEED线条图像演变过程 (a)氧等离子体处理后的蓝宝石(0001)表面; (b) 二维成核阶段的MgO缓冲层表面; (c) MgO缓冲层开始三维成岛状生长; (d) 薄层低温ZnO缓冲层生长在MgO上; (e) 退火后的ZnO缓冲层表现出平整二维表面[9]

    Figure 1.  Evolution of RHEED line image of buffer layer during epitaxial growth of ZnO: (a) Oxygen plasma treated sapphire (0001) surface; (b) MgO buffer layer surface in two-dimensional nucleation stage; (c) the MgO buffer layer begins to grow into three-dimensional islands; (d) thin layer low temperature ZnO buffer layer grown on MgO; (e) annealed ZnO buffer layer exhibits a flat two-dimensional surface[9]

    图 2  ZnO在c面蓝宝石上的原子排列示意图 (a)厚度为1 nm的MgO缓冲层; (b)厚度大于3 nm的MgO缓冲层[14]

    Figure 2.  Schematic diagram of atomic arrangement of ZnO on c-sapphire: (a) MgO buffer layer with a thickness of 1 nm; (b) MgO buffer layer with a thickness greater than 3 nm[14]

    图 3  ZnO与GaN异质界面的STEM图像, 通过Zn束流保护, 获得了清晰陡峭的界面, 保证了外延层的Zn极性均一[17]

    Figure 3.  The STEM image of the hetero interface between ZnO and GaN, and it is protected by Zn beam, which obtains a clear and sharp interface and ensures uniformity of Zn polarity in the epitaxial layer[17]

    图 4  N掺杂MgZnO薄膜原子力图像, 粗糙度为0.72 nm[29]

    Figure 4.  Atomic force image of N-doped MgZnO film with roughness of 0.72 nm[29]

    图 5  II族氧化物半导体带隙与晶格常数关系

    Figure 5.  Relationship between band gap and lattice constant of group II oxide semiconductors.

    图 6  (a), (b)二维电子气系统中应变层应力类型与压电极化方向; (c) BeMgZnO体系下应变类型随组分比例的变化情况[56]

    Figure 6.  (a), (b) Strain stress type and piezoelectric polarization direction in two-dimensional electron gas system; (c) variation of strain type with composition ratio in BeMgZnO system[56]

    图 7  ZnO薄膜中杂质浓度的深度分布情况 (a)非故意掺杂层中Si, Mo, Ta, Al的分布情况; (b)氮掺杂层中C, B, N, Cl, F的分布情况; (c) 施主型杂质元素经抑制后的纵向分布情况[79]

    Figure 7.  Depth distribution of impurity concentration in ZnO thin films: (a) Distribution of Si, Mo, Ta and Al in unintentionally doped layers; (b) longitudinal distribution of donor-type impurity elements after suppression[79]

    图 8  ZnO单晶衬底上外延层中杂质元素的SIMS数据[80]

    Figure 8.  SIMS data of impurity elements in epitaxial layers on ZnO single crystal substrates[80]

    图 9  极性面ZnO单晶衬底在氧环境下经1150 ℃退火1h前后, 杂质种类及含量变化情况[23]

    Figure 9.  Changes in impurity types and contents of O-polar ZnO single crystal substrate after annealing at 1150 ℃ for 1 hour in an oxygen atmosphere[23]

    图 10  (a)稀盐酸刻蚀后的ZnO单晶Zn极性表面; (b)稀盐酸刻蚀前后, Si元素的深度分布[81,82]

    Figure 10.  (a) Zn polar surface of ZnO single crystal after being etched by dilute hydrochloric acid; (b) depth distribution of Si element before and after being etched dilute hydrochloric acid[81,82]

    图 11  沿极性表面外延时, Zn极性与O极性表面极化电荷分布情况以及利用光生非平衡载流子构建Zn极性表面层富电子环境[17]

    Figure 11.  Zn polar and O polar surface polarized charge distribution along epitaxial surface and Zn polar surface layer rich electronic environment using photogenerated unbalanced carriers[17]

    图 12  Zn极性表面(2 × 2) + VZn重构的STM图像及结构示意图[105]

    Figure 12.  STM image and structure diagram of Zn polar surface (2 × 2) + VZn reconstruction[105]

    Baidu
  • [1]

    Prakash V, Agarwal A, Mussada E K 2019 Silicon 11 1617Google Scholar

    [2]

    Neubert M, Rudolph P 2001 Prog. Cryst. Growth Charact. Mater. 43 119Google Scholar

    [3]

    Mullin J B 2004 J. Cryst. Growth 264 578Google Scholar

    [4]

    Nakamura S 2015 Rev. Mod. Phys. 87 1139Google Scholar

    [5]

    Akasaki I 2015 Rev. Mod. Phys. 87 1119Google Scholar

    [6]

    Amano H 2015 Rev. Mod. Phys. 87 1133Google Scholar

    [7]

    Liang Y H, Towe E 2018 Appl. Phys. Rev. 5 011107Google Scholar

    [8]

    Walsh A, Zunger A 2017 Nat. Mater. 16 964Google Scholar

    [9]

    Chen Y F, Ko H J, Hong S K, Yao T, Segawa Y 2000 J. Cryst. Growth 214 87Google Scholar

    [10]

    Chen Y F, Ko H J, Hong S K, Yao T 2000 Appl. Phys. Lett. 76 559Google Scholar

    [11]

    Fons P, Iwata K, Yamada A, Matsubara K, Niki S, Nakahara K, Tanabe T, Takasu H 2000 Appl. Phys. Lett. 77 1801Google Scholar

    [12]

    Fons P, Iwata K, Niki S, Yamada A, Matsubara K, Watanabe M 2000 J. Cryst. Growth 209 532Google Scholar

    [13]

    Liu J S, Shan C X, Wang S P, Sun F, Yao B, Shen D Z 2010 J. Cryst. Growth 312 2861Google Scholar

    [14]

    Kato H, Miyamoto K, Sano M, Yao T 2004 Appl. Phys. Lett. 84 4562Google Scholar

    [15]

    Hong S K, Hanada T, Ko H J, Chen Y F, Yao T, Imai D, Araki K, Shinohara M, Saitoh K, Terauchi M 2002 Phys. Rev. B 65 115331Google Scholar

    [16]

    Park J S, Hong S K, Minegishi T, Park S H, Im I H, Hanada T, Cho M W, Yao T, Lee J W, Lee J Y 2007 Appl. Phys. Lett. 90 201907Google Scholar

    [17]

    Xie X H, Li B H, Zhang Z Z, Wang S P, Shen D Z 2018 Sci. Rep. 8 17020Google Scholar

    [18]

    Helbig R 1972 J. Cryst. Growth. 15 25Google Scholar

    [19]

    Look D C, Reynolds D C, Sizelove J R, Jones R L, Litton C W, Cantwell G, Harsch W C 1998 Solid State Commun. 105 399Google Scholar

    [20]

    Ohshima E, Ogino H, Niikura I, Maeda K, Sato M, Ito M, Fukuda T 2004 J. Cryst. Growth 260 166Google Scholar

    [21]

    Maeda K, Sato M, Niikura I, Fukuda T 2005 Semicond. Sci. Technol. 20 S49Google Scholar

    [22]

    Ehrentraut D, Maeda K, Kano M, Fujii K, Fukuda T 2011 J. Cryst. Growth 320 18Google Scholar

    [23]

    Graubner S, Neumann C, Volbers N, Meyer B K, Blasing J, Krost A 2007 Appl. Phys. Lett. 90 042103Google Scholar

    [24]

    Takamizu D, Nishimoto Y, Akasaka S, Yuji H, Tamura K, Nakahara K, Onuma T, Tanabe T, Takasu H, Kawasaki M, Chichibu S F 2008 J. Appl. Phys. 103 063502Google Scholar

    [25]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 2-Lett. 42 L1002Google Scholar

    [26]

    Kato H, Sano M, Miyamoto K, Yao T 2003 Jpn. J. Appl. Phys. Part 1-Regul. Pap. Short Notes Rev. Pap. 42 2241Google Scholar

    [27]

    Park S H, Minegishi T, Lee H J, Oh D C, Ko H J, Chang J H, Yao T 2011 J. Appl. Phys. 110 053520Google Scholar

    [28]

    Tsukazaki A, Akasaka S, Nakahara K, Ohno Y, Ohno H, Maryenko D, Ohtomo A, Kawasaki M 2010 Nat. Mater. 9 889Google Scholar

    [29]

    Nakahara K, Akasaka S, Yuji H, Tamura K, Fujii T, Nishimoto Y, Takamizu D, Sasaki A, Tanabe T, Takasu H, Amaike H, Onuma T, Chichibu S F, Tsukazaki A, Ohtomo A, Kawasaki M 2010 Appl. Phys. Lett. 97 013501Google Scholar

    [30]

    Makino T, Segawa Y, Kawasaki M, Ohtomo A, Shiroki R, Tamura K, Yasuda T, Koinuma H 2001 Appl. Phys. Lett. 78 1237Google Scholar

    [31]

    Choopun S, Vispute R D, Yang W, Sharma R P, Venkatesan T, Shen H 2002 Appl. Phys. Lett. 80 1529Google Scholar

    [32]

    Sharma A K, Narayan J, Muth J F, Teng C W, Jin C, Kvit A, Kolbas R M, Holland O W 1999 Appl. Phys. Lett. 75 3327Google Scholar

    [33]

    Teng C W, Muth J F, Ozgur U, Bergmann M J, Everitt H O, Sharma A K, Jin C, Narayan J 2000 Appl. Phys. Lett. 76 979Google Scholar

    [34]

    Coli G, Bajaj K K 2001 Appl. Phys. Lett. 78 2861Google Scholar

    [35]

    Ohtomo A, Shiroki R, Ohkubo I, Koinuma H, Kawasaki M 1999 Appl. Phys. Lett. 75 4088Google Scholar

    [36]

    Vashaei Z, Minegishi T, Suzuki H, Hanada T, Cho M W, Yao T, Setiawan A 2005 J. Appl. Phys. 98 054911Google Scholar

    [37]

    Tanaka H, Fujita S, Fujita S 2005 Appl. Phys. Lett. 86 192911Google Scholar

    [38]

    Zheng Q H, Huang F, Ding K, Huang J, Chen D G, Zhan Z B, Lin Z 2011 Appl. Phys. Lett. 98 221112Google Scholar

    [39]

    Wang L K, Ju Z G, Zhang J Y, Zheng J, Shen D Z, Yao B, Zhao D X, Zhang Z Z, Li B H, Shan C X 2009 Appl. Phys. Lett. 95 131113Google Scholar

    [40]

    Xie X H, Zhang Z Z, Li B H, Wang S P, Jiang M M, Shan C X, Zhao D X, Chen H Y, Shen D Z 2014 Opt. Express 22 246Google Scholar

    [41]

    Ju Z G, Shan C X, Yang C L, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2009 Appl. Phys. Lett. 94 101902Google Scholar

    [42]

    Ju Z G, Shan C X, Jiang D Y, Zhang J Y, Yao B, Zhao D X, Shen D Z, Fan X W 2008 Appl. Phys. Lett. 93 173505Google Scholar

    [43]

    Kaneko K, Onuma T, Tsumura K, Uchida T, Jinno R, Yamaguchi T, Honda T, Fujita S 2016 Appl. Phys. Express 9 111102Google Scholar

    [44]

    Onuma T, Ono M, Ishii K, Kaneko K, Yamaguchi T, Fujita S, Honda T 2018 Appl. Phys. Lett. 113 061903Google Scholar

    [45]

    Kaneko K, Tsumura K, Ishii K, Onuma T, Honda T, Fujita S 2018 J. Electron. Mater. 47 4356Google Scholar

    [46]

    Wen M C, Lu S A, Chang L, Chou M M C, Ploog K H 2017 J. Cryst. Growth 477 169Google Scholar

    [47]

    Ryu Y R, Lee T S, Lubguban J A, Corman A B, White H W, Leem J H, Han M S, Park Y S, Youn C J, Kim W J 2006 Appl. Phys. Lett. 88 052103Google Scholar

    [48]

    Kim W J, Leem J H, Han M S, Ryu Y R, Lee T S 2006 J. Appl. Phys. 99 096104Google Scholar

    [49]

    Su L X, Zhu Y, Chen M M, Zhang Q L, Su Y Q, Ji X, Wu T Z, Gui X C, Xiang R, Tang Z K 2013 Appl. Phys. Lett. 103 072104Google Scholar

    [50]

    Jeong T S, Han M S, Kim J H, Bae S J, Youn C J 2007 J. Phys. D-Appl. Phys. 40 370Google Scholar

    [51]

    Chen M M, Xiang R, Su L X, Zhang Q L, Cao J S, Zhu Y, Gui X C, Wu T Z, Tang Z K 2012 J. Phys. D-Appl. Phys. 45 455101Google Scholar

    [52]

    Ye D Q, Mei Z X, Liang H L, Liu Y L, Azarov A, Kuznetsov A, Du X L 2014 J. Phys. D-Appl. Phys. 47 175102Google Scholar

    [53]

    Park S H, Ahn D 2014 Physica B 441 12Google Scholar

    [54]

    Su L X, Zhu Y, Zhang Q L, Chen M M, Wu T Z, Gui X C, Pan B C, Xiang R, Tang Z K 2013 Appl. Surf. Sci. 274 341Google Scholar

    [55]

    Yong D Y, He H Y, Su L X, Zhu Y, Tang Z K, Pan B C 2014 J. Alloys Compd. 608 197Google Scholar

    [56]

    Ding K, Ullah M B, Avrutin V, Ozgur U, Morkoc H 2017 Appl. Phys. Lett. 111 182101Google Scholar

    [57]

    Gorczyca I, Teisseyre H, Suski T, Christensen N E, Svane A 2016 J. Appl. Phys. 120 215704Google Scholar

    [58]

    Toporkov M, Demchenko D O, Zolnai Z, Volk J, Avrutin V, Morkoc H, Ozgur U 2016 J. Appl. Phys. 119 095311Google Scholar

    [59]

    Toporkov M, Avrutin V, Okur S, Izyumskaya N, Demchenko D, Volk J, Smith D J, Morkoc H, Ozgur U 2014 J. Cryst. Growth 402 60Google Scholar

    [60]

    Yang C, Li X M, Gao X D, Cao X, Yang R, Li Y Z 2010 J. Cryst. Growth 312 978Google Scholar

    [61]

    Toporkov M, Ullah M B, Demchenko D O, Avrutin V, Morkoc H, Ozgur U 2017 J. Cryst. Growth 467 145Google Scholar

    [62]

    Ullah M B, Avrutin V, Nakagawara T, Hafiz S, Altuntas I, Ozgur U, Morkoc H 2017 J. Appl. Phys. 121 185704Google Scholar

    [63]

    Roessler D M, Walker W C 1967 Phys. Rev. 159 733Google Scholar

    [64]

    Cordero B, Gomez V, Platero-Prats A E, Reves M, Echeverria J, Cremades E, Barragan F, Alvarez S 2008 Dalton Trans. 21 2832

    [65]

    Ashrafi A, Jagadish C 2007 J. Appl. Phys. 102 071101Google Scholar

    [66]

    Zhu Y, Chen M M, Su L X, Su Y Q, Ji X, Gui X C, Tang Z K 2014 J. Alloys Compd. 616 505Google Scholar

    [67]

    Chen M M, Zhu Y, Su L X, Zhang Q L, Chen A Q, Ji X, Xiang R, Gui X C, Wu T Z, Pan B C, Tang Z K 2013 Appl. Phys. Lett. 102 202103Google Scholar

    [68]

    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle C G 2014 Rev. Mod. Phys. 86 253Google Scholar

    [69]

    Kohan A F, Ceder G, Morgan D, Van de Walle C G 2000 Phys. Rev. B 61 15019Google Scholar

    [70]

    Sokol A A, French S A, Bromley S T, Catlow C R A, van Dam H J J, Sherwood P 2007 Faraday Discuss. 134 267Google Scholar

    [71]

    Lyons J L, Janotti A, Van de Walle C G 2009 Appl. Phys. Lett. 95 252105Google Scholar

    [72]

    Wang L G, Zunger A 2003 Phys. Rev. Lett. 90 256401Google Scholar

    [73]

    Duan X M, Stampfl C, Bilek M M M, McKenzie D R 2009 Phys. Rev. B 79 235208Google Scholar

    [74]

    Urban D F, Korner W, Elsasser C 2016 Phys. Rev. B 94 075140Google Scholar

    [75]

    Puchala B, Morgan D 2012 Phys. Rev. B 85 195207Google Scholar

    [76]

    Limpijumnong S, Zhang S B, Wei S H, Park C H 2004 Phys. Rev. Lett. 92 155504Google Scholar

    [77]

    Li J, Wei S H, Li S S, Xia J B 2006 Phys. Rev. B 74 081201Google Scholar

    [78]

    Gai Y Q, Li J B, Li S S, Xia J B, Yan Y F, Wei S H 2009 Phys. Rev. B 80 153201Google Scholar

    [79]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 AIP Adv. 8 035115

    [80]

    Lautenschlaeger S, Sann J, Volbers N, Meyer B K, Hoffmann A, Haboeck U, Wagner M R 2008 Phys. Rev. B 77 144108

    [81]

    Akasaka S, Nakahara K, Yuji H, Tsukazaki A, Ohtomo A, Kawasaki M 2011 Appl. Phys. Express 4 035701

    [82]

    Kozuka Y, Tsukazaki A, Kawasaki M 2014 Appl. Phys. Rev. 1 011303

    [83]

    Akasaka S, Tsukazaki A, Nakahara K, Ohtomo A, Kawasaki M 2011 Jpn. J. Appl. Phys. 50 080215

    [84]

    Oba F, Choi M, Togo A, Tanaka I 2011 Sci. Technol. Adv. Mater. 12 034302Google Scholar

    [85]

    Ellmer K, Bikowski A 2016 J. Phys. D-Appl. Phys. 49 413002Google Scholar

    [86]

    McCluskey M D, Jokela S J 2009 J. Appl. Phys. 106 071101Google Scholar

    [87]

    Janotti A, Van de Walle C G 2009 Rep. Prog. Phys. 72 126501Google Scholar

    [88]

    Janotti A, Van de Walle C G 2007 Phys. Rev. B 76 165202Google Scholar

    [89]

    Oba F, Togo A, Tanaka I, Paier J, Kresse G 2008 Phys. Rev. B 77 245202Google Scholar

    [90]

    Oba F, Nishitani S R, Isotani S, Adachi H, Tanaka I 2001 J. Appl. Phys. 90 824Google Scholar

    [91]

    Borseth T M, Svensson B G, Kuznetsov A Y, Klason P, Zhao Q X, Willander M 2006 Appl. Phys. Lett. 89 262112Google Scholar

    [92]

    Look D C, Leedy K D, Vines L, Svensson B G, Zubiaga A, Tuomisto F, Doutt D R, Brillson L J 2011 Phys. Rev. B 84 115202Google Scholar

    [93]

    Vidya R, Ravindran P, Fjellvag H, Svensson B G, Monakhov E, Ganchenkova M, Nieminen R M 2011 Phys. Rev. B 83 045206Google Scholar

    [94]

    Ton-That C, Weston L, Phillips M R 2012 Phys. Rev. B 86 115205Google Scholar

    [95]

    Alkauskas A, Pasquarello A 2011 Phys. Rev. B 84 125206Google Scholar

    [96]

    Knutsen K E, Galeckas A, Zubiaga A, Tuomisto F, Farlow G C, Svensson B G, Kuznetsov A Y 2012 Phys. Rev. B 86 121203Google Scholar

    [97]

    Can M M, Shah S I, Doty M F, Haughn C R, Firat T 2012 J. Phys. D-Appl. Phys. 45 195104Google Scholar

    [98]

    Kim D H, Lee G W, Kim Y C 2012 Solid State Commun. 152 1711Google Scholar

    [99]

    Travlos A, Boukos N, Chandrinou C, Kwack H S, Dang L S 2009 J. Appl. Phys. 106 104307Google Scholar

    [100]

    Selim F A, Weber M H, Solodovnikov D, Lynn K G 2007 Phys. Rev. Lett. 99 085502Google Scholar

    [101]

    Erhart P, Albe K 2006 Appl. Phys. Lett. 88 201918Google Scholar

    [102]

    Vlasenko L S, Watkins G D 2005 Phys. Rev. B 72 035203Google Scholar

    [103]

    Liu H Y, Izyumskaya N, Avrutin V 2012 J. Appl. Phys. 112 033706Google Scholar

    [104]

    Liu L, Xu J L, Wang D D, Jiang M M, Wang S P, Li B H, Zhang Z Z, Zhao D X, Shan C X, Yao B, Shen D Z 2012 Phys. Rev. Lett. 108 215501Google Scholar

    [105]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2017 J. Phys. D-Appl. Phys. 50 325304Google Scholar

    [106]

    Sanyal D, Roy T K, Chakrabarti M, Dechoudhury S, Bhowmick D, Chakrabarti A 2008 J. Phys.-Condes. Matter 20 045217Google Scholar

    [107]

    Ono R, Togimitsu T, Sato W 2015 J. Radioanal. Nucl. Chem. 303 1223Google Scholar

    [108]

    Khan E H, Weber M H, McCluskey M D 2013 Phys. Rev. Lett. 111 017401Google Scholar

    [109]

    Makkonen I, Korhonen E, Prozheeva V, Tuomisto F 2016 J. Phys.-Condes. Matter 28 224002Google Scholar

    [110]

    Chakrabarti M, Jana D, Sanyal D 2013 Vacuum 87 16Google Scholar

    [111]

    Sarkar A, Chakrabarti M, Ray S K, Bhowmick D, Sanyal D 2011 J. Phys.-Condes. Matter 23 155801Google Scholar

    [112]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Zuniga-Perez J, Munoz-Sanjose V 2007 Phys. Rev. B 75 205305Google Scholar

    [113]

    Chen Z Q, Betsuyaku K, Kawasuso A 2008 Phys. Rev. B 77 113204Google Scholar

    [114]

    Erdem E 2017 Nanoscale 9 10983Google Scholar

    [115]

    Lambrecht W R L, Boonchun A 2013 Phys. Rev. B 87 195207Google Scholar

    [116]

    Parashar S K S, Murty B S, Repp S, Weber S, Erdem E 2012 J. Appl. Phys. 111 113712Google Scholar

    [117]

    Vlasenko L S 2010 Appl. Magn. Reson. 39 103Google Scholar

    [118]

    Vlasenko L S 2009 Physica B 404 4774Google Scholar

    [119]

    Zheng H, Weismann A, Berndt R 2013 Phys. Rev. Lett. 110 226101Google Scholar

    [120]

    Xu H, Dong L, Shi X Q, Van Hove M A, Ho W K, Lin N, Wu H S, Tong S Y 2014 Phys. Rev. B 89 235403Google Scholar

    [121]

    Stavale F, Nilius N, Freund H J 2013 J. Phys. Chem. Lett. 4 3972Google Scholar

    [122]

    Dulub O, Boatner L A, Diebold U 2002 Surf. Sci. 519 201Google Scholar

    [123]

    Zubiaga A, Garcia J A, Plazaola F, Tuomisto F, Saarinen K, Zuniga Perez J, Munoz-Sanjose V 2006 J. Appl. Phys. 99 053516Google Scholar

    [124]

    Lin B X, Fu Z X, Jia Y B 2001 Appl. Phys. Lett. 79 943Google Scholar

    [125]

    Dong Y F, Tuomisto F, Svensson B G, Kuznetsov A Y, Brillson L J 2010 Phys. Rev. B 81 081201Google Scholar

    [126]

    Reshchikov M A 2014 J. Appl. Phys. 115 012010Google Scholar

    [127]

    Zhu L C, Lockrey M, Phillips M R, Cuong T T 2018 Phys. Status Solidi A-Appl. Mat. 215 1800389Google Scholar

    [128]

    Wu X L, Siu G G, Fu C L, Ong H C 2001 Appl. Phys. Lett. 78 2285Google Scholar

    [129]

    Liu X Y, Shan C X, Zhu H, Li B H, Jiang M M, Yu S F, Shen D Z 2015 Sci. Rep. 5 13641Google Scholar

    [130]

    Zhu H, Shan C X, Li B H, Zhang Z Z, Shen D Z, Choy K L 2011 J. Mater. Chem. 21 2848Google Scholar

    [131]

    McCluskey M D, Corolewski C D, Lv J P, Tarun M C, Teklemichael S T, Walter E D, Norton M G, Harrison K W, Ha S 2015 J. Appl. Phys. 117 112802Google Scholar

    [132]

    Fan J C, Sreekanth K M, Xie Z, Chang S L, Rao K V 2013 Prog. Mater. Sci. 58 874Google Scholar

    [133]

    Reynolds J G, Reynolds C L 2014 Adv. Condens. Matter Phys. 2014 457058

    [134]

    Tsukazaki A, Ohtomo A, Onuma T, Ohtani M, Makino T, Sumiya M, Ohtani K, Chichibu S F, Fuke S, Segawa Y, Ohno H, Koinuma H, Kawasaki M 2005 Nat. Mater. 4 42

    [135]

    Jiao S J, Zhang Z Z, Lu Y M, Shen D Z, Yao B, Zhang J Y, Li B H, Zhao D X, Fan X W, Tang Z K 2006 Appl. Phys. Lett. 88 031911Google Scholar

    [136]

    Chu S, Olmedo M, Yang Z, Kong J Y, Liu J L 2008 Appl. Phys. Lett. 93 181106Google Scholar

    [137]

    Chu S, Wang G P, Zhou W H, Lin Y Q, Chernyak L, Zhao J Z, Kong J Y, Li L, Ren J J, Liu J L 2011 Nat. Nanotechnol. 6 506Google Scholar

    [138]

    Xie X H, Li B H, Zhang Z Z, Shen D Z 2018 J. Phys. D-Appl. Phys. 51 225104Google Scholar

    [139]

    Stehr J E, Wang X J, Filippov S, Pearton S J, Ivanov I G, Chen W M, Buyanova I A 2013 J. Appl. Phys. 113 103509Google Scholar

    [140]

    Yong D Y, He H Y, Tang Z K, Wei S H, Pan B C 2015 Phys. Rev. B 92 235207Google Scholar

    [141]

    Chavillon B, Cario L, Renaud A, Tessier F, Chevire F, Boujtita M, Pellegrin Y, Blart E, Smeigh A 2012 J. Am. Chem. Soc. 134 464Google Scholar

    [142]

    Ye Z Z, He H P, Jiang L 2018 Nano Energy 52 527Google Scholar

    [143]

    Chen A Q, Zhu H, Wu Y Y, Chen M M, Zhu Y, Gui X C, Tang Z K 2016 Adv. Funct. Mater. 26 3696Google Scholar

    [144]

    Sun F, Shan C X, Li B H, Zhang Z Z, Shen D Z, Zhang Z Y, Fan D 2011 Opt. Lett. 36 499Google Scholar

    [145]

    Liu J S, Shan C X, Shen H, Li B H, Zhang Z Z, Liu L, Zhang L G, Shen D Z 2012 Appl. Phys. Lett. 101 011106Google Scholar

  • [1] Yan Li-Bin, Bai Yu-Rong, Li Pei, Liu Wen-Bo, He Huan, He Chao-Hui, Zhao Xiao-Hong. First-principles calculations of point defect migration mechanisms in InP. Acta Physica Sinica, 2024, 73(18): 183101. doi: 10.7498/aps.73.20240754
    [2] Lü Yong-Jie, Chen Yan, Ye Fang-Cheng, Cai Li-Bin, Dai Zi-Jie, Ren Yun-Peng. Influcence of external electric field and B/N doping on the band gap of stanene. Acta Physica Sinica, 2024, 73(8): 083101. doi: 10.7498/aps.73.20231935
    [3] Ma Rong-Rong, Ma Chen-Rui, Ge Mei, Guo Shi-Qi, Zhang Jun-Feng. Structural stability and electronic properties of charged point defects in monolayer blue phosphorus. Acta Physica Sinica, 2024, 73(13): 137301. doi: 10.7498/aps.73.20240011
    [4] Deng Chen-Hua, Yu Zhong-Hai, Wang Yu-Tao, Kong Sen, Zhou Chao, Yang Sen. Crystallization kinetics of Ti-doped Nd2Fe14B/α-Fe nanocomposite permanent magnets. Acta Physica Sinica, 2023, 72(2): 027501. doi: 10.7498/aps.72.20221479
    [5] Zhi Wen-Qiang, Fei Hong-Ming, Han Yu-Hui, Wu Min, Zhang Ming-Da, Liu Xin, Cao Bin-Zhao, Yang Yi-Biao. Unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2022, 71(3): 038501. doi: 10.7498/aps.71.20211299
    [6] Study on unidirectional transmission of funnel-shaped waveguide with complete bandgap. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211299
    [7] Zhang Hua-Lin, He Xin, Zhang Zhen-Hua. Magneto-electronic property in zigzag phosphorene nanoribbons doped with transition metal atom. Acta Physica Sinica, 2021, 70(5): 056101. doi: 10.7498/aps.70.20201408
    [8] Mo Man, Zeng Ji-Shu, He Hao, Zhang Liang, Du Long, Fang Zhi-Jie. The first-principle study on the formation energies of Be, Mg and Mn doped CuInO2. Acta Physica Sinica, 2019, 68(10): 106102. doi: 10.7498/aps.68.20182255
    [9] Wang Guan-Shi,  Lin Yan-Ming,  Zhao Ya-Li,  Jiang Zhen-Yi,  Zhang Xiao-Dong. Electronic and optical performances of (Cu, N) codoped TiO2/MoS2 heterostructure photocatalyst: Hybrid DFT (HSE06) study. Acta Physica Sinica, 2018, 67(23): 233101. doi: 10.7498/aps.67.20181520
    [10] Zhang Yue, Zhao Jian, Dong Peng, Tian Da-Xi, Liang Xing-Bo, Ma Xiang-Yang, Yang De-Ren. Effects of dopants on the growth of oxidation-induced stacking faults in heavily doped n-type Czochralaki silicon. Acta Physica Sinica, 2015, 64(9): 096105. doi: 10.7498/aps.64.096105
    [11] Liu Hai-Yun, Liu Xiang-Lian, Tian Ding-Qi, Du Zheng-Liang, Cui Jiao-Lin. Acoustic charge transport behaviors of sulfur-doped wide gap Ga2Te3-based semiconductors. Acta Physica Sinica, 2015, 64(19): 197201. doi: 10.7498/aps.64.197201
    [12] Cao Yong-Jun, Tan Wei, Liu Yan. Coupling characteristics of point defect modes in two-dimensional magnonic crystals. Acta Physica Sinica, 2012, 61(11): 117501. doi: 10.7498/aps.61.117501
    [13] Hu Xiao-Hui, Xu Jun-Min, Sun Li-Tao. Research of electronic and magnetic properties on gold doped zigzag graphene nanoribbons. Acta Physica Sinica, 2012, 61(4): 047106. doi: 10.7498/aps.61.047106
    [14] Ji Chuan, Xu Jin. Effect of point defects on copper precipitation in heavily boron-doped Czochralski silicon p/p+ epitaxial wafer. Acta Physica Sinica, 2012, 61(23): 236102. doi: 10.7498/aps.61.236102
    [15] Wei Qi, Cheng Ying, Liu Xiao-Jun. The influence of point defect array on directional emission of phononic crystal waveguide. Acta Physica Sinica, 2011, 60(12): 124301. doi: 10.7498/aps.60.124301
    [16] Wu Hong-Li, Zhao Xin-Qing, Gong Sheng-Kai. Effect of Nb on electronic structure of NiTi intermetallic compound: A first-principles study. Acta Physica Sinica, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [17] Hu Wang-Yu, Yang Jian-Yu, Ao Bing-Yun, Wang Xiao-Lin, Chen Pi-Heng, Shi Peng. Energy calculation of point defects in plutonium by embedded atom method. Acta Physica Sinica, 2010, 59(7): 4818-4825. doi: 10.7498/aps.59.4818
    [18] Yi Chen-Hong, Mu Qing-Sun, Miao Tian-De. The DEM simulation for two-dimension granular system with point defects. Acta Physica Sinica, 2008, 57(6): 3636-3640. doi: 10.7498/aps.57.3636
    [19] Ma Xin-Guo, Jiang Jian-Jun, Liang Pei. Theoretical study of native point defects on anatase TiO2 (101) surface. Acta Physica Sinica, 2008, 57(5): 3120-3125. doi: 10.7498/aps.57.3120
    [20] Hu Xiao-Jun, Li Rong-Bin, Shen He-Sheng, He Xian-Chang, Deng Wen, Luo Li-Xiong. Investigation of defect properties in doped diamond films. Acta Physica Sinica, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
Metrics
  • Abstract views:  13529
  • PDF Downloads:  306
  • Cited By: 0
Publishing process
  • Received Date:  08 July 2019
  • Accepted Date:  06 August 2019
  • Available Online:  19 August 2019
  • Published Online:  20 August 2019

/

返回文章
返回
Baidu
map