-
Plutonium is vulnerable to aging due to α radioactive decay. The properties and behaviors of point defects in plutonium are the basis for understanding plutonium aging. We have employed a molecular dynamics technique to calculate the formation energy and binding energy of point defects and small helium-vacancy clusters in plutonium, using embedded atom method, Morse pair potential and the Lennard-Jones pair potential for describing the interactions of Pu-Pu, Pu-He and He-He, respectively. A single self-interstitial atom’s steady configuration is 〈100〉 dumb-bell. An interstitial helium atom at octahedral site is more stable than that at tetrahedral site. As a result of high binding energy of an interstitial helium atom to a vacancy, helium atoms can combine with vacancies to form helium-vacancy cluster during the process of self-radiation. The formation energy of helium-vacancy cluster increases with the increasing number of helium atoms. When the number of helium atoms equals to the number of vacancy, the helium-vacancy cluster is rather stable. Both substitutional and interstitial helium atoms are trapped at the grain boundary (GB). The binding energy of the self-interstitial atom at GB core is higher than that of helium atom and vacancy.
-
Keywords:
- plutonium /
- point defects /
- embedded atom method /
- radiation damage
[1] Cooper N G 2000 Challenges in Plutonium Science, Los Alamos Science 26, Los Alamos National Laboratory
[2] Albers R C 2001 Nature 410 759
[3] Savrasov S Y, Kotliar G, Abrahams E 2001 Nature 410 793
[4] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H, Abrahams E 2003 Science 300 953
[5] Moore K T, Sderlind P, Schwartz A J, Laughlin D E 2006 Phys. Rev. Lett. 96 206402
[6] Petit L, Svane A, Szotek Z, Temmerman W M 2003 Science 301 498
[7] Luo W H, Meng D Q, Li G, Chen H C 2008 Acta Phys. Sin. 57 160 (in Chinese) [罗文华、蒙大桥、李 赣、陈虎翅 2008 57 160]
[8] Valone S M, Baskes M I, Martin R L 2006 Phys. Rev. B 73 214209
[9] Valone S M, Baskes M I 2007 J. Comput. Aided Mater. Des. 14 357
[10] Chung B W, Thompson S R, Woods C H, Hopkins D J, Gourdin W H, Ebbinghaus B B 2006 J. Nucl. Mater. 355 142
[11] Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229
[12] Yang L, Zu X T, Xiao H Y, Yang S Z, Liu K Z, Gao F 2005 Acta Phys. Sin. 54 4857 (in Chinese) [杨 莉、祖小涛、肖海 燕、杨树政、刘柯钊、Fei Gao 2005 54 4857] 〖13] Xie Z, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159 (in Chinese) [谢 朝、侯 氢、汪 俊、孙铁英、龙兴贵、罗顺忠 2008 57 5159]
[13] Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703 (in Chinese) [王海燕、祝文军、宋振飞、刘绍军、陈向荣、贺红亮 2008 57 3703]
[14] Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149 (in Chinese) [陈 敏、汪 俊、侯 氢 2009 58 1149]
[15] Chen P H, Shen L, Ao B Y, Li R, Li J 2009 Acta Phys. Sin. 58 2605 (in Chinese) [陈丕恒、申 亮、敖冰云、李 嵘、李 炬 2009 58 2605]
[16] Ao B Y, Wang X L, Hu W Y, Yang J Y, Xia J X 2007 J. Alloys Comp. 444-445 300
[17] Refson K 2000 Comput. Phys. Commun. 126 310
[18] Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243
[19] Ao B Y, Yang J Y, Wang X L, Hu W Y 2006 J. Nucl. Mater. 350 83
[20] Baskes M I, Vitek V 1985 Metall. Trans. A 16 1625
[21] Suzuki A, Mishin Y 2003 Interface Sci. 11 425
[22] Robinson M T 1994 J. Nucl. Mater. 216 1
-
[1] Cooper N G 2000 Challenges in Plutonium Science, Los Alamos Science 26, Los Alamos National Laboratory
[2] Albers R C 2001 Nature 410 759
[3] Savrasov S Y, Kotliar G, Abrahams E 2001 Nature 410 793
[4] Dai X, Savrasov S Y, Kotliar G, Migliori A, Ledbetter H, Abrahams E 2003 Science 300 953
[5] Moore K T, Sderlind P, Schwartz A J, Laughlin D E 2006 Phys. Rev. Lett. 96 206402
[6] Petit L, Svane A, Szotek Z, Temmerman W M 2003 Science 301 498
[7] Luo W H, Meng D Q, Li G, Chen H C 2008 Acta Phys. Sin. 57 160 (in Chinese) [罗文华、蒙大桥、李 赣、陈虎翅 2008 57 160]
[8] Valone S M, Baskes M I, Martin R L 2006 Phys. Rev. B 73 214209
[9] Valone S M, Baskes M I 2007 J. Comput. Aided Mater. Des. 14 357
[10] Chung B W, Thompson S R, Woods C H, Hopkins D J, Gourdin W H, Ebbinghaus B B 2006 J. Nucl. Mater. 355 142
[11] Trinkaus H, Singh B N 2003 J. Nucl. Mater. 323 229
[12] Yang L, Zu X T, Xiao H Y, Yang S Z, Liu K Z, Gao F 2005 Acta Phys. Sin. 54 4857 (in Chinese) [杨 莉、祖小涛、肖海 燕、杨树政、刘柯钊、Fei Gao 2005 54 4857] 〖13] Xie Z, Hou Q, Wang J, Sun T Y, Long X G, Luo S Z 2008 Acta Phys. Sin. 57 5159 (in Chinese) [谢 朝、侯 氢、汪 俊、孙铁英、龙兴贵、罗顺忠 2008 57 5159]
[13] Wang H Y, Zhu W J, Song Z F, Liu S J, Chen X R, He H L 2008 Acta Phys. Sin. 57 3703 (in Chinese) [王海燕、祝文军、宋振飞、刘绍军、陈向荣、贺红亮 2008 57 3703]
[14] Chen M, Wang J, Hou Q 2009 Acta Phys. Sin. 58 1149 (in Chinese) [陈 敏、汪 俊、侯 氢 2009 58 1149]
[15] Chen P H, Shen L, Ao B Y, Li R, Li J 2009 Acta Phys. Sin. 58 2605 (in Chinese) [陈丕恒、申 亮、敖冰云、李 嵘、李 炬 2009 58 2605]
[16] Ao B Y, Wang X L, Hu W Y, Yang J Y, Xia J X 2007 J. Alloys Comp. 444-445 300
[17] Refson K 2000 Comput. Phys. Commun. 126 310
[18] Morishita K, Sugano R, Wirth B D 2003 J. Nucl. Mater. 323 243
[19] Ao B Y, Yang J Y, Wang X L, Hu W Y 2006 J. Nucl. Mater. 350 83
[20] Baskes M I, Vitek V 1985 Metall. Trans. A 16 1625
[21] Suzuki A, Mishin Y 2003 Interface Sci. 11 425
[22] Robinson M T 1994 J. Nucl. Mater. 216 1
Catalog
Metrics
- Abstract views: 10147
- PDF Downloads: 800
- Cited By: 0