Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Near-infrared band I retinal oximetry guided by optical coherence tomography angiography

GAO Mengqin ZHANG Huiying SUN Bin LIU Kaiyuan DU Chixin LI Peng

Citation:

Near-infrared band I retinal oximetry guided by optical coherence tomography angiography

GAO Mengqin, ZHANG Huiying, SUN Bin, LIU Kaiyuan, DU Chixin, LI Peng
cstr: 32037.14.aps.74.20241686
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Accurate measurement of retinal blood oxygen saturation (SO2) provides valuable early insights into the pathophysiology of ocular diseases such as diabetic retinopathy, glaucoma, and retinal vein occlusion. Visible-light optical coherence tomography (OCT) can directly measure SO2 through spectral fitting, but its application is limited due to the irritability of visible light and its influence on the physiological state of the retina. Near-infrared band I (NIR-I) causes less ocular stimulation. Even though the hemoglobin absorption effect is weaker in this region, its scattering property is also related to SO2. According to this principle, we propose a novel optical coherence tomography (OCTA) guided NIR-I technique for retinal blood oxygen saturation measurement. This method is used to calculate SO2 through calibrating the optical density ratio (ODR) of oxygen-sensitive wavelength (855 nm) to isosbestic wavelength (805 nm). By utilizing the three-dimensional (3D) blood flow maps generated by the OCTA, this technique can automatically identify retinal vessels and surrounding tissue regions, thereby minimizing the errors caused by manual selection. Consequently, the classification accuracy of arteries and veins increases from 82.1% to 96.7%. The calibrated average retinal blood oxygen saturation is 94%±21% for arteries and 56%±13% for veins, which aligns with normal physiological range. The representative result of artery-vein classification is presented in the following figure. This method greatly improves the accuracy and efficiency of measurement, and provides a reliable tool for early diagnosis, disease assessment, and treatment monitoring of ophthalmic diseases, which has broad application prospects.
      Corresponding author: LI Peng, peng_li@zju.edu.cn
    • Funds: Project supported by the “Pioneer” and “Leading Goose” R&D Program of Zhejiang Province, China (Grant No. 2023C03089), the National Natural Science Foundation of China (Grant Nos. 62075189, T2293751, T2293753), and the Natural Science Foundation of Zhenjiang Province, China (Grant No. LZ24H120002).
    [1]

    Hammer M, Vilser W, Riemer T, et al. 2009 Graefes. Arch. Clin. Exp. Ophthalmol. 247 1025Google Scholar

    [2]

    Hardarson S H, Stefánsson E 2012 Br. J. Ophthalmol. 96 560Google Scholar

    [3]

    Olafsdottir O B, Hardarson S H, Gottfredsdottir M S, Harris A, Stefánsson E 2011 Invest. Ophthalmol. Vis. Sci. 52 6409Google Scholar

    [4]

    Hardarson S H, Gottfredsdottir M S, Halldorsson G H, et al. 2009 Invest. Ophthalmol. Vis. Sci. 50 5247Google Scholar

    [5]

    Hardarson S H, Stefánsson E 2012 Acta Ophthalmol. 90 466Google Scholar

    [6]

    Hardarson S H, Stefánsson E 2010 Am. J. Ophthalmol. 150 871Google Scholar

    [7]

    Eliasdottir T S 2018 Acta Ophthalmol. 96 1Google Scholar

    [8]

    Garg A K, Knight D, Lando L, Chao D L 2021 Transl. Vis. Sci. Technol. 10 5Google Scholar

    [9]

    高椿明, 先永利, 戴云 2017 激光与光电子学进展 54 45

    Gao C M, Xian Y L, Dai Y 2017 Laser Optoelectron. Prog. 54 45

    [10]

    Yi J, Wei Q, Liu W Z, Backman V, Zhang H F 2013 Opt. Lett. 38 1796Google Scholar

    [11]

    Chen S Y, Shu X, Nesper P L, Liu W Z, Fawzi A A, Zhang H F 2017 Biomed. Opt. Express 8 1415Google Scholar

    [12]

    Pi S H, Camino A, Cepurna W, Wei X, Zhang M, Huang D, Morrison J, Jia Y L 2018 Biomed. Opt. Express 9 2056Google Scholar

    [13]

    Liu K Y, Zhu T P, Gao M Q, Yin X T, Zheng R, Yan Y, Gao L, Ding Z H, Ye J, Li P 2023 Biomed. Opt. Express 14 1670Google Scholar

    [14]

    Faber D J, Aalders M C G, Mik E G, et al. 2004 Phys. Rev. Lett. 93 028102Google Scholar

    [15]

    Kagemann L, Wollstein G, Wojtkowski M, et al. 2007 J. Biomed. Opt. 12 041212Google Scholar

    [16]

    Ye Y F, Jiang H, Shen M X, Lam B L, Debuc D C, Ge L L, Sehi M, Wang J H 2012 Clin. Ophthalmol. 6 2085Google Scholar

    [17]

    Son T, Alam M, Kim T H, Liu C G, Toslak D, Yao X C 2019 Exp. Biol. Med. 244 813Google Scholar

    [18]

    Huang D, Swanson E A, Lin C P, et al. 1991 Science 254 1178Google Scholar

    [19]

    唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 64 174202Google Scholar

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174202Google Scholar

    [20]

    Deng X F, Liu K Y, Zhu T P, Guo D Y, Yin X T, Yao L, Ding Z H, Ye J, Li P 2022 Biomed. Opt. Express 13 3615Google Scholar

    [21]

    Huang L Z, Fu Y M, Chen R X, et al. 2019 IEEE Trans. Med. Imaging 38 2695Google Scholar

    [22]

    Li H K, Liu K Y, Yao L, Deng X F, Zhang Z Y, Li P 2021 J. Innov. Opt. Health. Sci. 14 2130001Google Scholar

    [23]

    Zhang Y M, Li H K, Cao T T, Chen R X, Qiu H X, Gu Y, Li P 2021 Quant. Imaging Med. Surg. 11 895Google Scholar

    [24]

    Bosschaart N, Edelman G J, Aalders M C G, van Leeuwen T G, Faber D J 2014 Lasers Med. Sci. 29 453Google Scholar

    [25]

    Hardarson S H, Harris A, Karlsson R A, et al. 2006 Invest. Ophthalmol. Vis. Sci. 47 5011Google Scholar

    [26]

    Delori F C 1988 Appl. Opt. 27 1113Google Scholar

  • 图 1  谱域OCT系统示意图

    Figure 1.  Schematic of SD-OCT system.

    图 2  (a)近红外宽带光源光谱强度图; (b) HbO2和Hb在近红外波段的衰减光谱, 数据来源于Nienke等[24]的研究. 蓝色和绿色矩形分别代表氧等消光波长805 nm, 氧敏感波长855 nm

    Figure 2.  (a) Spectral intensity of the near-infrared (NIR) SLD light source; (b) extinction spectra of HbO2 and Hb at NIR band, and the data from the study of Nienke et al.[24]. The blue and green rectangles represent the oxygen-isosbestic wavelength (around 805 nm) and oxygen-sensitive wavelength (around 855 nm), respectively.

    图 3  ODR分析算法流程图, ID-OCTA为基于逆信噪比和退相关的OCTA算法

    Figure 3.  Flowchart of the ODR analysis algorithm, ID-OCTA is OCTA based on inverse SNR and decorrelation features.

    图 4  自动识别血管边缘和组织区域三维位置算法流程 (a)自动识别血管边缘和组织区域X-Y平面上位置, 其中(I), (II), (III)分别为小鼠视网膜SVP层血管的造影图, 掩模图和退相关系数图, (IV), (V)分别为小鼠视网膜SVP层大血管的掩模图和轮廓图, (VI)代表了用于ODR计算的血管区域, (VII), (VIII)分别为不同膨胀系数(10, 8)的大血管膨胀图和大血管周围组织区域图, (IX) 代表了用于ODR计算的组织区域. (b)小鼠视网膜血流断层示意图, 其位置由(I)中白色虚线示意, 黄色虚线表示深度方向上用于ODR计算的区域

    Figure 4.  Workflow of the algorithm for automatically identifying the 3D locations of vascular edges and adjacent tissues: (a) Automatic identification of vessel edges and tissue regions in the x-y plane, where (I)—(III) show the OCTA image, vascular mask, and decorrelation map of the mouse retina SVP, respectively, (IV) and (V) depict the mask and edge map of large vessels in the SVP, respectively, (VI) represents the vascular region used for ODR calculation. (VII) and (VIII) display images of the dilated large vessels with different dilation coefficients (10, 8) and the surrounding tissue region, (IX) shows the tissue region used for ODR calculation. (b) Representative tomogram of mouse retinal blood flow, with its position indicated by the white dashed line in (I), the yellow dashed lines in panel (b) represent the depth range used for the ODR calculation.

    图 5  小鼠视网膜动静脉分类结果 (a) OCT均值投影图, 白色虚线为血管周围组织区域示意; (b) SVP层OCTA图; (c)图(a), (b)中大血管对应的ODR值; (d) ODR动静脉分类的ROC分析曲线; (e)代表性的10组研究对象的所有大血管的ODR值, 黑色实线表示该组中所有大血管ODR值的平均值, 图中百分比数据代表各组相应的动静脉ROC分类准确率, 所有图中红色代表动脉, 蓝色代表静脉

    Figure 5.  Classification results of arteries and veins in mouse retina: (a) Mean projection of OCT, with the white dashed lines indicating the tissue regions around vessels; (b) SVP OCTA image; (c) ODR values of large vessels shown in panels (a) and (b); (d) ROC analysis curve of the ability of ODR index to classify the arteries and veins; (e) ODR values of all large vessels in the representative ten subjects, with the black solid line representing the average ODR value for each subject, the percentage data in the figure represents the classification accuracy of the corresponding arteriovenous ROC in each group, red represents arteries, and blue represents veins in all panels.

    图 6  手动选取血管和组织区域得到的小鼠视网膜动静脉分类代表性结果. 图中百分比数据代表各组相应的动静脉ROC分类准确率

    Figure 6.  Representative arteriovenous classification results in mouse retina based on manual selection of vascular and tissue regions. the percentage data in the figure represents the classification accuracy of the corresponding arteriovenous ROC in each group.

    表 1  近红外OCT视网膜血氧测量代表性结果

    Table 1.  Representative results of NIR OCT retinal oximetry.

    研究对象#1#2#3#4#5#6#7#8#9#10
    动脉血氧/%91±1290±2192±1899±991±1690±2098±1091±1190±1891±18
    静脉血氧/%57±751±1454±1558±1950±1942±1257±1651±1243±1357±15
    DownLoad: CSV
    Baidu
  • [1]

    Hammer M, Vilser W, Riemer T, et al. 2009 Graefes. Arch. Clin. Exp. Ophthalmol. 247 1025Google Scholar

    [2]

    Hardarson S H, Stefánsson E 2012 Br. J. Ophthalmol. 96 560Google Scholar

    [3]

    Olafsdottir O B, Hardarson S H, Gottfredsdottir M S, Harris A, Stefánsson E 2011 Invest. Ophthalmol. Vis. Sci. 52 6409Google Scholar

    [4]

    Hardarson S H, Gottfredsdottir M S, Halldorsson G H, et al. 2009 Invest. Ophthalmol. Vis. Sci. 50 5247Google Scholar

    [5]

    Hardarson S H, Stefánsson E 2012 Acta Ophthalmol. 90 466Google Scholar

    [6]

    Hardarson S H, Stefánsson E 2010 Am. J. Ophthalmol. 150 871Google Scholar

    [7]

    Eliasdottir T S 2018 Acta Ophthalmol. 96 1Google Scholar

    [8]

    Garg A K, Knight D, Lando L, Chao D L 2021 Transl. Vis. Sci. Technol. 10 5Google Scholar

    [9]

    高椿明, 先永利, 戴云 2017 激光与光电子学进展 54 45

    Gao C M, Xian Y L, Dai Y 2017 Laser Optoelectron. Prog. 54 45

    [10]

    Yi J, Wei Q, Liu W Z, Backman V, Zhang H F 2013 Opt. Lett. 38 1796Google Scholar

    [11]

    Chen S Y, Shu X, Nesper P L, Liu W Z, Fawzi A A, Zhang H F 2017 Biomed. Opt. Express 8 1415Google Scholar

    [12]

    Pi S H, Camino A, Cepurna W, Wei X, Zhang M, Huang D, Morrison J, Jia Y L 2018 Biomed. Opt. Express 9 2056Google Scholar

    [13]

    Liu K Y, Zhu T P, Gao M Q, Yin X T, Zheng R, Yan Y, Gao L, Ding Z H, Ye J, Li P 2023 Biomed. Opt. Express 14 1670Google Scholar

    [14]

    Faber D J, Aalders M C G, Mik E G, et al. 2004 Phys. Rev. Lett. 93 028102Google Scholar

    [15]

    Kagemann L, Wollstein G, Wojtkowski M, et al. 2007 J. Biomed. Opt. 12 041212Google Scholar

    [16]

    Ye Y F, Jiang H, Shen M X, Lam B L, Debuc D C, Ge L L, Sehi M, Wang J H 2012 Clin. Ophthalmol. 6 2085Google Scholar

    [17]

    Son T, Alam M, Kim T H, Liu C G, Toslak D, Yao X C 2019 Exp. Biol. Med. 244 813Google Scholar

    [18]

    Huang D, Swanson E A, Lin C P, et al. 1991 Science 254 1178Google Scholar

    [19]

    唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 64 174202Google Scholar

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174202Google Scholar

    [20]

    Deng X F, Liu K Y, Zhu T P, Guo D Y, Yin X T, Yao L, Ding Z H, Ye J, Li P 2022 Biomed. Opt. Express 13 3615Google Scholar

    [21]

    Huang L Z, Fu Y M, Chen R X, et al. 2019 IEEE Trans. Med. Imaging 38 2695Google Scholar

    [22]

    Li H K, Liu K Y, Yao L, Deng X F, Zhang Z Y, Li P 2021 J. Innov. Opt. Health. Sci. 14 2130001Google Scholar

    [23]

    Zhang Y M, Li H K, Cao T T, Chen R X, Qiu H X, Gu Y, Li P 2021 Quant. Imaging Med. Surg. 11 895Google Scholar

    [24]

    Bosschaart N, Edelman G J, Aalders M C G, van Leeuwen T G, Faber D J 2014 Lasers Med. Sci. 29 453Google Scholar

    [25]

    Hardarson S H, Harris A, Karlsson R A, et al. 2006 Invest. Ophthalmol. Vis. Sci. 47 5011Google Scholar

    [26]

    Delori F C 1988 Appl. Opt. 27 1113Google Scholar

  • [1] Chen Ji-Hui, Wang Feng, Li Yu-Long, Zhang Xing, Yao Ke, Guan Zan-Yang, Liu Xiang-Ming. Tomographic incoherent holography for microscale X-ray source. Acta Physica Sinica, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [2] Qian Huang-He, Wang Di, Han Tao, Ding Zhi-Hua. A method of fast locating discrete interface based on phase information of complex master-slave optical coherence tomography. Acta Physica Sinica, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [3] Wu Tong, Huo Wen-Qi, Huang Yun-Zhi, Wang Ji-Ming, Gu Xiao-Rong, Lu Yuan-Gang, He Chong-Jun, Liu You-Wen. A miniaturized pre-calibration based Lissajous scanning fiber probe for endoscopic optical coherence tomography. Acta Physica Sinica, 2021, 70(15): 150701. doi: 10.7498/aps.70.20210151
    [4] Ge Yin-Juan, Pan Xing-Chen, Liu Cheng, Zhu Jian-Qiang. Technique of detecting optical components based on coherent modulation imaging. Acta Physica Sinica, 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [5] Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen. Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system. Acta Physica Sinica, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [6] Hu Zhe-Hao, Shangguan Zi-Wei, Qiu Jian-Rong, Yang Shan-Shan, Bao Wen, Shen Yi, Li Peng, Ding Zhi-Hua. Stimulated-emission based spectral domain optical coherence tomography for molecular contrast imaging. Acta Physica Sinica, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [7] Wang Yi, Guo Zhe, Zhu Li-Da, Zhou Hong-Xian, Ma Zhen-He. Nanoscale surface topography imaging using phase-resolved spectral domain optical coherence tomography. Acta Physica Sinica, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [8] Fan Jin-Yu, Gao Feng, Kong Wen, Li Hai-Wen, Shi Guo-Hua. A full spectrum resamping method in polygon tunable laser-based swept-source optical coherence tomography. Acta Physica Sinica, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [9] Ma Zhen-He, Dou Shi-Dan, Ma Yu-Shu, Liu Jian, Zhao Yu-Qian, Liu Jiang-Hong, Lü Jiang-Tao, Wang Yi. Measurement of wall strain in embryonic chick heart by spectral domain optical coherence tomography. Acta Physica Sinica, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [10] Shangguan Zi-Wei, Shen Yi, Li Peng, Ding Zhi-Hua. Wavenumber calibration and phase measurement in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [11] Pan Cong, Guo Li, Shen Yi, Yan Xue-Guo, Ding Zhi-Hua, Li Peng. Phase correction method based on interfacial signal in swept source optical coherence tomography. Acta Physica Sinica, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [12] Yan Xue-Guo, Shen Yi, Pan Cong, Li Peng, Ding Zhi-Hua. Tapered structure based all-fiber probe for endoscopic optical coherence tomography. Acta Physica Sinica, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [13] Tang Tao, Zhao Chen, Chen Zhi-Yan, Li Peng, Ding Zhi-Hua. Ultrahigh-resolution optical coherence tomography and its application in inspection of industrial materials. Acta Physica Sinica, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [14] Zhao Chen, Chen Zhi-Yan, Ding Zhi-Hua, Li Peng, Shen Yi, Ni Yang. Line-field parallel spectral domain optical coherence tomography and its application in defect inspection. Acta Physica Sinica, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [15] Liu Guo-Zhong, Zhou Zhe-Hai, Qiu Jun, Wang Xiao-Fei, Liu Gui-Li, Wang Rui-Kang. Application of amplitude and phase registration in blood flow imaging using optical coherence tomography. Acta Physica Sinica, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [16] Huang Liang-Min, Ding Zhi-Hua, Hong Wei, Wang Chuan. Correlated Doppler optical coherence tomography. Acta Physica Sinica, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [17] Shang Zai-Ming, Ding Zhi-Hua, Wang Ling, Liu Yong. Path length coded coherence combination for three-dimensional superresolution. Acta Physica Sinica, 2011, 60(12): 124204. doi: 10.7498/aps.60.124204
    [18] Yang Ya-Liang, Ding Zhi-Hua, Wang Kai, Wu Ling, Wu Lan. Development of full-field optical coherence tomography system. Acta Physica Sinica, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [19] Jia Ya-Qing, Liang Yan-Mei, Zhu Xiao-Nong. Simulation of optical coherence tomography using Monte Carlo method. Acta Physica Sinica, 2007, 56(7): 3861-3866. doi: 10.7498/aps.56.3861
    [20] XIANG JI-YING, WU ZHEN, ZENG SHAO-QUN, LUO QING-MING, ZHANG PING, HUANG DE-XIU. ANALYSIS OF 3D TRANSFER FUNCTIONS OF OPTICAL COHERENCE TOMOGRAPHY. Acta Physica Sinica, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
Metrics
  • Abstract views:  500
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  06 December 2024
  • Accepted Date:  09 February 2025
  • Available Online:  17 February 2025
  • Published Online:  05 April 2025

/

返回文章
返回
Baidu
map