搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光学相干层析成像的早期鸡胚心脏径向应变测量

马振鹤 窦世丹 马毓姝 刘健 赵玉倩 刘江红 吕江涛 王毅

引用本文:
Citation:

基于光学相干层析成像的早期鸡胚心脏径向应变测量

马振鹤, 窦世丹, 马毓姝, 刘健, 赵玉倩, 刘江红, 吕江涛, 王毅

Measurement of wall strain in embryonic chick heart by spectral domain optical coherence tomography

Ma Zhen-He, Dou Shi-Dan, Ma Yu-Shu, Liu Jian, Zhao Yu-Qian, Liu Jiang-Hong, Lü Jiang-Tao, Wang Yi
PDF
导出引用
  • 本文提出了一种测量胚胎心脏流出道径向应变的方法.使用光学相干层析成像系统对早期鸡胚流出道进行4D(x,y,z,t)扫描,重建流出道图像后计算多普勒角度;在任意走向的流出道的断层图像中采用半自动边缘检测算法,提取管壁内外边缘,测量管壁面积和短轴长度信息;结合多普勒角度、管壁面积和短轴长度得到管壁壁厚信息,从而实现心脏流出道管壁径向应变的计算.对HH18阶段鸡胚心脏流出道的径向应变进行测量,结果表明该方法能够在任意流出道倾角下测量其径向应变,有效扩大了心脏应变测量的范围,为胚胎心脏生物力学特性的研究提供了一种工具.
    During cardiac development, the growth, remodeling and morphogenesis of embryonic hearts are closely linked to hemodynamic forces. An understanding of the interaction mechanism between hemodynamic forces and heart development is important for the early diagnosis and treatment of various congenital defects. The myocardial wall strain (MWS) in embryonic heart is a critical parameter for quantifying the mechanical properties of cardiac tissues. Here, we focus on the radial strain which is defined as the change of the myocardial wall thickness. An effective measurement of MWS is conductive to studies of embryonic heart development. Chick embryo is a popular animal model used for studing the cardiac development due to the similarity of cardiac development between the human heart and the chick heart at early developmental stages and its easy access. Although various imaging methods have been proposed, there still remain significant challenges to imaging of early stage chick embryo heart because it is small in size and beats fast. Optical coherence tomography (OCT) is a non-contact three-dimensional imaging modality with high spatial and temporal resolution which has been widely used for imaging the biological tissue. In this paper, we describe a method to measure in vivo MWS of chicken embryonic hearts with a high speed spectral domain OCT(SDOCT) system worked at 1310 nm. We perform four-dimensional (4D) (x, y, z, t) scanning on the outflow tract (OFT) of chick embryonic hearts in a non-gated way. The transient states of the OFT are extracted from the 4D data by using the beating synchronization algorithm. The OFT center line can be achieved by image processing. Assuming that the blood flow is parallel to the center line in the blood vessel, we calculate the Doppler angle of blood flow from the OFT center line. In a certain OFT cross-section, the OFT myocardial wall (inner and external borders) is segmented from the OCT images with a semi-automatic boundary-detection algorithm. Then, the myocardial wall thickness is calculated from the Doppler angle, area and sum of inner and external radii of the segmented myocardial wall. The radial strain is obtained by calculating the myocardial wall thickness variation. Previous methods calculated the myocardial wall thickness by directly subtracting inner and external radii. The measured result may be deteriorated by insufficient resolution of the system since the myocardial wall of OFT is very thin. The present method can solve this problem by calculating the thickness through using the sum of the radii instead of the subtraction. The experimental results on embryonic chick hearts demonstrate that the proposed method can measure the MWS of OFT along arbitrary orientation and it is a useful tool for studying the biomechanical characteristics of embryonic hearts.
      通信作者: 马振鹤, mazhenhe@163.com
    • 基金项目: 国家自然科学基金(批准号:31170956,61275214,81301208)、中央高校基本科研业务费(批准号:N120223001)和河北省自然科学基金(批准号:A2015501002,H2015501133)资助的课题.
      Corresponding author: Ma Zhen-He, mazhenhe@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 31170956, 61275214, 81301208), the Fundamental Research Fund for the Central Universities, China (Grant No. N120223001), and the Natural Science Foundation of Hebei Province, China (Grant Nos. A2015501002, H2015501133).
    [1]

    Tan G X Y, Jamil M, Tee N G Z, Liang Z, Yap C H 2015 Ann. Biomed. Eng. 43 2780

    [2]

    Vos S D 2005 Ph. D. Dissertation (Rotterdam:Erasmus University)

    [3]

    Hove J R, K঎ster R W, Forouhar A S, Acevedobolton G, Fraser S E, Gharib M 2003 Nature 421 172

    [4]

    Rugonyi S, Shaut C, Liu A, Thornburg K, Wang R K 2008 Phys. Med. Biol. 53 5077

    [5]

    Nerurkar R N L, Achtien K H, Filas B A, Voronov D A, Taber L A 2008 J. Biomech. Eng. 130 637

    [6]

    Liu A P, Wang R K, Thornburg K L, Rugonyi S 2009 Eng. Comput. 25 73

    [7]

    Lacktis J W, Manasek F J 1978 Birth. Defects. Orig. Artic. Ser. 14 205

    [8]

    Taber L A, Sun H, Clark E B, Keller B B 1994 Circ. Res. 75 896

    [9]

    Peng J S, Peng H 2012 Acta Phys. Sin. 61 248701 (in Chinese)[彭京思, 彭虎2012 61 248701]

    [10]

    Phoon C, Aristizabal O, Turnbull D H 2000 Ultrasound Med. Biol. 26 1275

    [11]

    Jones E A V, Baron M H, Fraser S E, Dickinson M E 2004 Ajp Heart & Circulatory Physiol. 287 H1561

    [12]

    Jenkins M W, Rothenberg F, Roy D, Nikolski V P, Hu Z, Watanabe M, Wilson D L, Efimov I R, Rollins A M 2006 Opt. Express 14 736

    [13]

    Yelbuz T M, Zhang X, Choma M A, Stadt H A, Zdanowicz M, Johnson G A, Kirby M L 2003 Circulation 108 154

    [14]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 G. Ital. Cardiol. 8 28

    [15]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese)[杨亚良, 丁志华, 王凯, 吴凌, 吴兰2009 58 1773]

    [16]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese)[唐弢, 赵晨, 陈志彦, 李鹏, 丁志华2015 64 174201]

    [17]

    Michael W J, Lindsy P, Shi G, Madhusudhana G, David L W, Michiko W, Andrew M R 2010 J. Biomed. Opt. 15 41

    [18]

    Li P, Yin X, Shi L, Liu A, Rugonyi S, Wang R K 2011 IEEE Trans. Biomed. Eng. 58 2333

    [19]

    Li P, Liu A P, Shi L, Yin X, Rugonyi S, Wang R K 2011 Phys. Med. Biol. 56 7081

    [20]

    Ma Z H, Dou S D, Zhao Y Q, Guo C, Liu J, Wang Q Y, Xu T, Wang R K, Wang Y 2015 Appl. Opt. 54 9253

    [21]

    Liu A P, Nickerson A, Troyer A, Xin Y, Cary R, Thornburg K, Wang R K, Rugonyi S 2011 Comput. Struct. 89 855

    [22]

    Choi W, Baumann B, Liu J J, Clermont A C, Feener E P, Duker J S, Fujimoto J G 2012 Opt. Express 3 1047

    [23]

    Ma Z H, Liu A P, Yin X, Troyer A, Thornburg K, Wang R K, Rugonyi S 2010 Biomed. Opt. Express 1 798

    [24]

    Bistoquet A, Oshinski J, Škrinjar O 2008 Med. Image. Anal. 12 69

    [25]

    Zhu D N 2008 Physiology (7th Ed.) (Beijing:People's Medical Publishing House) p77(in Chinese)[朱大年2008生理学(第七版) (北京:人民卫生出版社)第77页]

  • [1]

    Tan G X Y, Jamil M, Tee N G Z, Liang Z, Yap C H 2015 Ann. Biomed. Eng. 43 2780

    [2]

    Vos S D 2005 Ph. D. Dissertation (Rotterdam:Erasmus University)

    [3]

    Hove J R, K঎ster R W, Forouhar A S, Acevedobolton G, Fraser S E, Gharib M 2003 Nature 421 172

    [4]

    Rugonyi S, Shaut C, Liu A, Thornburg K, Wang R K 2008 Phys. Med. Biol. 53 5077

    [5]

    Nerurkar R N L, Achtien K H, Filas B A, Voronov D A, Taber L A 2008 J. Biomech. Eng. 130 637

    [6]

    Liu A P, Wang R K, Thornburg K L, Rugonyi S 2009 Eng. Comput. 25 73

    [7]

    Lacktis J W, Manasek F J 1978 Birth. Defects. Orig. Artic. Ser. 14 205

    [8]

    Taber L A, Sun H, Clark E B, Keller B B 1994 Circ. Res. 75 896

    [9]

    Peng J S, Peng H 2012 Acta Phys. Sin. 61 248701 (in Chinese)[彭京思, 彭虎2012 61 248701]

    [10]

    Phoon C, Aristizabal O, Turnbull D H 2000 Ultrasound Med. Biol. 26 1275

    [11]

    Jones E A V, Baron M H, Fraser S E, Dickinson M E 2004 Ajp Heart & Circulatory Physiol. 287 H1561

    [12]

    Jenkins M W, Rothenberg F, Roy D, Nikolski V P, Hu Z, Watanabe M, Wilson D L, Efimov I R, Rollins A M 2006 Opt. Express 14 736

    [13]

    Yelbuz T M, Zhang X, Choma M A, Stadt H A, Zdanowicz M, Johnson G A, Kirby M L 2003 Circulation 108 154

    [14]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A 1991 G. Ital. Cardiol. 8 28

    [15]

    Yang Y L, Ding Z H, Wang K, Wu L, Wu L 2009 Acta Phys. Sin. 58 1773 (in Chinese)[杨亚良, 丁志华, 王凯, 吴凌, 吴兰2009 58 1773]

    [16]

    Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese)[唐弢, 赵晨, 陈志彦, 李鹏, 丁志华2015 64 174201]

    [17]

    Michael W J, Lindsy P, Shi G, Madhusudhana G, David L W, Michiko W, Andrew M R 2010 J. Biomed. Opt. 15 41

    [18]

    Li P, Yin X, Shi L, Liu A, Rugonyi S, Wang R K 2011 IEEE Trans. Biomed. Eng. 58 2333

    [19]

    Li P, Liu A P, Shi L, Yin X, Rugonyi S, Wang R K 2011 Phys. Med. Biol. 56 7081

    [20]

    Ma Z H, Dou S D, Zhao Y Q, Guo C, Liu J, Wang Q Y, Xu T, Wang R K, Wang Y 2015 Appl. Opt. 54 9253

    [21]

    Liu A P, Nickerson A, Troyer A, Xin Y, Cary R, Thornburg K, Wang R K, Rugonyi S 2011 Comput. Struct. 89 855

    [22]

    Choi W, Baumann B, Liu J J, Clermont A C, Feener E P, Duker J S, Fujimoto J G 2012 Opt. Express 3 1047

    [23]

    Ma Z H, Liu A P, Yin X, Troyer A, Thornburg K, Wang R K, Rugonyi S 2010 Biomed. Opt. Express 1 798

    [24]

    Bistoquet A, Oshinski J, Škrinjar O 2008 Med. Image. Anal. 12 69

    [25]

    Zhu D N 2008 Physiology (7th Ed.) (Beijing:People's Medical Publishing House) p77(in Chinese)[朱大年2008生理学(第七版) (北京:人民卫生出版社)第77页]

  • [1] 钱黄河, 王迪, 韩涛, 丁志华. 基于复数主从光学相干层析成像相位信息的离散界面快速定位方法.  , 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [2] 葛银娟, 潘兴臣, 刘诚, 朱健强. 基于相干调制成像的光学检测技术.  , 2020, 69(17): 174202. doi: 10.7498/aps.69.20200224
    [3] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测.  , 2020, 69(1): 014101. doi: 10.7498/aps.69.20191181
    [4] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法.  , 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [5] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统.  , 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [6] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像.  , 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [7] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究.  , 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [8] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法.  , 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [9] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用.  , 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [10] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究.  , 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [11] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用.  , 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [12] 鲍文, 丁志华, 王川, 梅胜涛. 基于相位敏感谱域光学相干层析术的潜指纹获取方法.  , 2013, 62(11): 114202. doi: 10.7498/aps.62.114202
    [13] 肖迪, 谢沂均. 一种结合JPEG压缩编码的彩色图像加密算法.  , 2013, 62(24): 240508. doi: 10.7498/aps.62.240508
    [14] 吴涛, 金义富, 侯睿, 杨俊杰. 不确定性边缘表示与提取的认知物理学方法.  , 2013, 62(6): 064201. doi: 10.7498/aps.62.064201
    [15] 马成举, 任立勇, 唐峰, 屈恩世, 徐金涛, 梁权, 王舰, 韩旭. 基于分布式光纤Bragg光栅传感技术的光缆卷盘静态压力研究.  , 2012, 61(5): 054702. doi: 10.7498/aps.61.054702
    [16] 王凯, 曾焱, 丁志华, 孟婕, 史国华, 张雨东. 谱域光学相干层析系统中基于解卷积方法的像质优化.  , 2010, 59(4): 2471-2478. doi: 10.7498/aps.59.2471
    [17] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制.  , 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [18] 梁艳梅, 周大川, 孟凡勇, 王明伟. 一种新型的专用于光学相干层析系统的宽带光纤光源.  , 2007, 56(6): 3246-3250. doi: 10.7498/aps.56.3246
    [19] 贾亚青, 梁艳梅, 朱晓农. 光学相干层析信号的模拟分析与计算.  , 2007, 56(7): 3861-3866. doi: 10.7498/aps.56.3861
    [20] 宗晓萍, 徐 艳, 董江涛. 多信息融合的模糊边缘检测技术.  , 2006, 55(7): 3223-3228. doi: 10.7498/aps.55.3223
计量
  • 文章访问数:  5915
  • PDF下载量:  156
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-07-13
  • 修回日期:  2016-09-25
  • 刊出日期:  2016-12-05

/

返回文章
返回
Baidu
map