搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于最优化线性波数光谱仪的谱域光学相干层析成像系统

吴彤 孙帅帅 王绪晖 王吉明 赫崇君 顾晓蓉 刘友文

引用本文:
Citation:

基于最优化线性波数光谱仪的谱域光学相干层析成像系统

吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文

Optimized linear wavenumber spectrometer based spectral-domain optical coherence tomography system

Wu Tong, Sun Shuai-Shuai, Wang Xu-Hui, Wang Ji-Ming, He Chong-Jun, Gu Xiao-Rong, Liu You-Wen
PDF
导出引用
  • 相比传统光谱仪,基于线性波数光谱仪的谱域光学相干层析(OCT)无需对非线性波数干涉光谱数据进行重采样和插值,可大大减少数据计算量并提高成像灵敏度.通过模拟计算干涉光谱信号和点扩散函数,以点扩散函数半峰全宽值的倒数作为评价准则,可以优化包括色散棱镜材料的折射率、顶角角度以及衍射光栅和色散棱镜之间旋转角角度的线性波数光谱仪的结构参数.根据优化结果,实验中选用F2玻璃等边色散棱镜,以光栅-棱镜间旋转角角度为21.8°搭建了最优化线性波数光谱仪,并引入谱域OCT成像系统.实验测得成像系统的轴向分辨率达到8.52 μm,灵敏度达到91 dB,6 dB成像深度达到1.2 mm.结合具有通用并行计算能力的图形处理卡,在无需重采样和插值的情况下可实时处理和显示人手指指甲皮肤接缝处的横断面OCT图像,验证了基于最优化线性波数光谱仪的谱域OCT系统的成像性能.
    In spectraldomain optical coherence tomography the sample is illuminated by a broadband light source, and the spectrum of the interference light between the light returned from the sample and a reference mirror is detected by a grating spectrometer. Conventionally, the grating spectrometer is comprised of a diffraction grating, a focusing lens, and a line-scan camera. According to the grating equation the diffraction angle from the grating is approximately linearly related to the optical wavelength. Thus the distribution function of the light spectrum at the line-scan camera is nonlinearly dependent on wavenumber. For the high-quality image reconstruction, the numerical resampling of the spectral interference data from wavelength-space to wavenumber-space is commonly required prior to the Fourier Transformation. The nonlinear detection of the spectral interferograms in wavenumber space also degrades the depth-dependent signal sensitivity in conventional linear-wavelength spectrometer based spectraldomain optical coherence tomography. Recently reported spectraldomain optical coherence tomography based on a linearwavenumber spectrometer does not need the resampling or interpolating of the nonlinearwavenumber interference spectral data, which greatly reduces the cost of computation and improves the imaging sensitivity. Various methods based on the different evaluation protocols for optimizing the design of the linear-wavenumber spectrometer have been reported. Here we report an effective optimization method for linear-wavenumber spectrometer used in a high-resolution spectral domain optical coherence tomography system. We take the reciprocal of the fullwidthhalfmaximum of the simulated point spread function as an evaluating criterion to optimize the structure parameters of the linearwavenumber spectrometer, including the refractive index and the vertex angle of the dispersive prism and the rotation angle between the diffraction grating and the dispersive prism. According to the optimization, an F2 equilateral dispersive prism is used to construct the optimized linearwavenumber spectrometer with a rotation angle of 21.8°. We construct an optimized linearwavenumber spectrometer and implement the spectrometer in a developed spectraldomain optical coherence tomography system as a detection unit. We evaluate the performances of the linear-wavenumber spectrometer both theoretically and experimentally. The experimentally measured axial resolution of the spectraldomain optical coherence tomography system based on the linear-wavenumber spectrometer is 8.52 μm, and the sensitivity is measured to be 91 dB with -6 dB sensitivity roll-off within a depth range of 1.2 mm. The experimentally measured sensitivity roll-off curve accords well with the theoretical sensitivity roll-off curve. Utilizing the general parallel computing capability of a GPU card, the highquality spectraldomain optical coherence tomography images of the human finger skin can be reconstructed in real time without any resampling or interpolating process.
      Corresponding author: Wu Tong, wutong@nuaa.edu.cn;ywliu@nuaa.edu.cn ; Liu You-Wen, wutong@nuaa.edu.cn;ywliu@nuaa.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities of China (Grant No. NZ2015104).
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Fercher F A, Hitzenberger C K, Kamp G, Elzaiat S Y 1995 Opt. Commun. 117 43

    [3]

    Hausler G, Lindner M W 1998 J. Biomed. Opt. 3 21

    [4]

    Cho H S, Jang S J, Kim K, Dan A V, Shishkov M, Bouma B E, Oh W Y 2013 Biomed. Opt. Express 5 223

    [5]

    Wang R K, Zhang A Q, Choi W J, Zhang Q Q, Chen C L, Miller A, Gregori G, Rosenfeld P J 2016 Opt. Lett. 41 2330

    [6]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)[梁艳梅, 周大川, 孟凡勇, 王明伟 2007 56 3246]

    [7]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese)[贾亚青, 梁艳梅, 朱晓农 2007 56 3861]

    [8]

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 60 023401 (in Chinese)[黄良敏, 丁志华, 洪威, 王川 2011 60 023401]

    [9]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Expresss 11 889

    [10]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183

    [11]

    Brauer B, Murdoch S G, Vanholsbeeck F 2016 Opt. Lett. 41 5732

    [12]

    Zhang M, Hwang T S, Campbell J P, Bailey S T, Wilson J D, Huang D, Jia Y 2016 Biomed. Opt. Express 7 816

    [13]

    Photiou C, Bousi E, Zouvani I, Pitris C 2017 Biomed. Opt. Express 8 2528

    [14]

    Chen J B, Zeng Y G, Yuan Z L, Tang Z L 2018 Acta Opt. Sin. 38 0111001 (in Chinese)[陈俊波, 曾亚光, 袁治灵, 唐志列 2018 光学学报 38 0111001]

    [15]

    Gao W R, Chen Y D, Liu C, Zhang T Q, Zhu Y 2016 Acta Opt. Sin. 45 0611001 (in Chinese)[高万荣, 陈一丹, 刘畅, 张秋庭, 朱越 2016 光学学报 45 0611001]

    [16]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese)[鲍文, 丁志华, 王川, 梅胜涛 2013 62 114202]

    [17]

    Hu Z L, Pan Y S, Rollins A M 2007 Appl. Opt. 46 8499

    [18]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795

    [19]

    Hu Z L, Rollins A M 2007 Phys. Opt. Lett. 32 3525

    [20]

    Gelikonov V M, Gelikonov G V, Shilyagin P A 2009 Opt. Spectrosc. 106 459

    [21]

    Watanabe Y, Itagaki T 2009 J. Biomed. Opt. 14 48

    [22]

    Lee S W, Kam H, Joo H P, Tae G L, Eun S L, Jae Y L 2015 J. Opt. Soc. Korea 19 55

    [23]

    Lan G P, Li G Q 2017 Sci. Rep. 7 75

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178

    [2]

    Fercher F A, Hitzenberger C K, Kamp G, Elzaiat S Y 1995 Opt. Commun. 117 43

    [3]

    Hausler G, Lindner M W 1998 J. Biomed. Opt. 3 21

    [4]

    Cho H S, Jang S J, Kim K, Dan A V, Shishkov M, Bouma B E, Oh W Y 2013 Biomed. Opt. Express 5 223

    [5]

    Wang R K, Zhang A Q, Choi W J, Zhang Q Q, Chen C L, Miller A, Gregori G, Rosenfeld P J 2016 Opt. Lett. 41 2330

    [6]

    Liang Y M, Zhou D C, Meng F Y, Wang M W 2007 Acta Phys. Sin. 56 3246 (in Chinese)[梁艳梅, 周大川, 孟凡勇, 王明伟 2007 56 3246]

    [7]

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861 (in Chinese)[贾亚青, 梁艳梅, 朱晓农 2007 56 3861]

    [8]

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 60 023401 (in Chinese)[黄良敏, 丁志华, 洪威, 王川 2011 60 023401]

    [9]

    Leitgeb R, Hitzenberger C K, Fercher A F 2003 Opt. Expresss 11 889

    [10]

    Choma M A, Sarunic M V, Yang C, Izatt J A 2003 Opt. Express 11 2183

    [11]

    Brauer B, Murdoch S G, Vanholsbeeck F 2016 Opt. Lett. 41 5732

    [12]

    Zhang M, Hwang T S, Campbell J P, Bailey S T, Wilson J D, Huang D, Jia Y 2016 Biomed. Opt. Express 7 816

    [13]

    Photiou C, Bousi E, Zouvani I, Pitris C 2017 Biomed. Opt. Express 8 2528

    [14]

    Chen J B, Zeng Y G, Yuan Z L, Tang Z L 2018 Acta Opt. Sin. 38 0111001 (in Chinese)[陈俊波, 曾亚光, 袁治灵, 唐志列 2018 光学学报 38 0111001]

    [15]

    Gao W R, Chen Y D, Liu C, Zhang T Q, Zhu Y 2016 Acta Opt. Sin. 45 0611001 (in Chinese)[高万荣, 陈一丹, 刘畅, 张秋庭, 朱越 2016 光学学报 45 0611001]

    [16]

    Bao W, Ding Z H, Wang C, Mei S T 2013 Acta Phys. Sin. 62 114202 (in Chinese)[鲍文, 丁志华, 王川, 梅胜涛 2013 62 114202]

    [17]

    Hu Z L, Pan Y S, Rollins A M 2007 Appl. Opt. 46 8499

    [18]

    Dorrer C, Belabas N, Likforman J P, Joffre M 2000 J. Opt. Soc. Am. B 17 1795

    [19]

    Hu Z L, Rollins A M 2007 Phys. Opt. Lett. 32 3525

    [20]

    Gelikonov V M, Gelikonov G V, Shilyagin P A 2009 Opt. Spectrosc. 106 459

    [21]

    Watanabe Y, Itagaki T 2009 J. Biomed. Opt. 14 48

    [22]

    Lee S W, Kam H, Joo H P, Tae G L, Eun S L, Jae Y L 2015 J. Opt. Soc. Korea 19 55

    [23]

    Lan G P, Li G Q 2017 Sci. Rep. 7 75

  • [1] 周飞, 陈奇, 刘浩, 戴越, 魏晨, 袁杭, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 张蜡宝, 吴培亨. 基于超导单光子探测器的红外光学系统噪声分析和优化.  , 2024, 73(6): 068501. doi: 10.7498/aps.73.20231526
    [2] 寇科, 王错, 王晛, 连天虹, 焦明星, 樊毓臻. 线性调频激光回馈粒度探测灵敏度提升方法.  , 2023, 72(16): 169501. doi: 10.7498/aps.72.20230569
    [3] 陈大勇, 缪培贤, 史彦超, 崔敬忠, 刘志栋, 陈江, 王宽. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2022, 71(2): 024202. doi: 10.7498/aps.71.20211122
    [4] 陈大勇, 缪培贤. 抽运-检测型原子磁力仪对电流源噪声的测量.  , 2021, (): . doi: 10.7498/aps.70.20211122
    [5] 刘旭阳, 张贺秋, 李冰冰, 刘俊, 薛东阳, 王恒山, 梁红伟, 夏晓川. AlGaN/GaN高电子迁移率晶体管温度传感器特性.  , 2020, 69(4): 047201. doi: 10.7498/aps.69.20190640
    [6] 张文杰, 刘郁松, 郭浩, 韩星程, 蔡安江, 李圣昆, 赵鹏飞, 刘俊. 双螺线圈射频共振结构增强硅空位自旋传感灵敏度方法.  , 2020, 69(23): 234206. doi: 10.7498/aps.69.20200765
    [7] 左小杰, 孙颍榕, 闫智辉, 贾晓军. 高灵敏度的量子迈克耳孙干涉仪.  , 2018, 67(13): 134202. doi: 10.7498/aps.67.20172563
    [8] 缪培贤, 杨世宇, 王剑祥, 廉吉庆, 涂建辉, 杨炜, 崔敬忠. 抽运-检测型非线性磁光旋转铷原子磁力仪的研究.  , 2017, 66(16): 160701. doi: 10.7498/aps.66.160701
    [9] 胡泽华, 叶涛, 刘雄国, 王佳. 抽样法与灵敏度法keff不确定度量化.  , 2017, 66(1): 012801. doi: 10.7498/aps.66.012801
    [10] 汪之国, 罗晖, 樊振方, 谢元平. 极化检测型铷原子磁力仪的研究.  , 2016, 65(21): 210702. doi: 10.7498/aps.65.210702
    [11] 刘建华, 唐军, 商成龙, 张伟, 毕钰, 翟陈婷, 郭泽彬, 王明焕, 郭浩, 钱坤, 刘俊, 薛晨阳. 面向谐振式微光学陀螺应用的球形谐振腔DQ乘积优化.  , 2015, 64(15): 154206. doi: 10.7498/aps.64.154206
    [12] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器.  , 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [13] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型.  , 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [14] 徐晋, 谢品华, 司福祺, 李昂, 周海金, 吴丰成, 王杨, 刘建国, 刘文清. 基于机载平台的NO2 垂直廓线反演灵敏度研究.  , 2013, 62(10): 104214. doi: 10.7498/aps.62.104214
    [15] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究.  , 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [16] 江莺, 梁大开, 曾捷, 倪晓宇. 监测点波长对高双折射光纤环镜轴向应变灵敏度的影响.  , 2013, 62(6): 064216. doi: 10.7498/aps.62.064216
    [17] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析.  , 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [18] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析.  , 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [19] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响.  , 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [20] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度.  , 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
计量
  • 文章访问数:  7455
  • PDF下载量:  163
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-07
  • 修回日期:  2018-03-15
  • 刊出日期:  2019-05-20

/

返回文章
返回
Baidu
map