Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

A method of measuring depth of focus in ultrafast pulsed laser systems based on Z-scanning technology

LIN Kesheng GAO Yu ZHONG Xiaoqing JIANG Xiaofang

Citation:

A method of measuring depth of focus in ultrafast pulsed laser systems based on Z-scanning technology

LIN Kesheng, GAO Yu, ZHONG Xiaoqing, JIANG Xiaofang
cstr: 32037.14.aps.74.20241658
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • With the development of technology, ultrafast pulse lasers are increasingly used in many fields, such as material processing, imaging, and medical treatments. The precision of these applications often depends on the ability to focus the laser beam into a tight spot with a minimal divergence in a certain range along the optical axis. Therefore, accurate measurement of depth of focus (DOF) is crucial for optimizing the performance of ultrafast laser systems and ensuring the reliability of the results obtained in various experiments and applications. Traditional methods of measuring the DOF mainly rely on directly capturing the beam size, which is impractical in high-intensity environments of ultrafast pulse laser systems due to potential damage to sensors and limitations in measurement accuracy. Furthermore, using autocorrelation or moving sensors to measure DOF in ultrafast pulse lasers introduces complex optical paths, leading to measurement errors and making them unreliable in precise focusing applications.To solve the problem of the limitations of current DOF measurement techniques for ultrafast pulse laser, in this work we propose a novel method based on Z-scan technique. According to nonlinear optical theory, it is found that the transmittance curves obtained from open-aperture (OA) Z-scan measurements of samples exhibiting two-photon absorption (TPA) all follow a Lorentzian distribution. By fitting this curve by Lorentzian distribution, the DOF of ultrafast pulse lasers and the full widths at half maximum (FWHM) of the OA Z-scan curves can be determined rapidly. The transmittance curves of solid and liquid samples with TPA across different types of lenses and microscope objectives within ultrafast optical systems are measured. The results show that the FWHM of the OA Z-scan curves and the theoretical DOF values are well consistent. This method effectively relates the size of the DOF to the beam waist radius derived from the distribution of the Lorentzian function in the OA Z-scan experimental curves, eliminating the influence of other parameters on the measurement results. In conclusion, a novel method of measuring DOF in ultrafast pulse laser systems by using the OA Z-scan technique is proposed. It provides a rapid, accurate and reliable way for determining the DOF in ultrafast laser focusing systems, thereby precisely controlling the ultrafast laser beam for a wide range of applications.
      Corresponding author: JIANG Xiaofang, jiangxf@scnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 62075065), the Science and Technology Program Project of Guangzhou, China (Grant Nos. 2019050001, 20202030148), the Natural Science Foundation of Guangdong Province, China (Grant No. 2021A1515011388), and the Guangdong Provincial Laboratory of Optical Information Materials and Technology, China (Grant No. 2017B030301007).
    [1]

    Chen B Y, Chakraborty T, Daetwyler S, Manton J D, Dean K, Fiolka R 2020 Biomed. Opt. Express 11 3830Google Scholar

    [2]

    Bo E, Luo Y M, Chen S, Liu X Y, Wang N S, Ge X, Wang X H, Chen S F, Chen S, Li J H, Liu L B 2017 Optica 4 701Google Scholar

    [3]

    刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才 2023 72 084205Google Scholar

    Liu Y H, Qin T X, Wang Y C, Kang X W, Liu J, Wu J C, Cao L C 2023 Acta Phys. Sin. 72 084205Google Scholar

    [4]

    王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 61 044208Google Scholar

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208Google Scholar

    [5]

    韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊 2023 72 178701Google Scholar

    Wei Q Y, Ni J L, Li L, Zhang Y Q, Yuan X C, Min C J 2023 Acta Phys. Sin. 72 178701Google Scholar

    [6]

    Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A, Watanabe S 2007 Opt. Lett. 32 2487Google Scholar

    [7]

    Cheng J, Liu C S, Shang S, Liu D, Perrie W, Dearden G, Watkins K 2013 Opt. Laser Technol. 46 88Google Scholar

    [8]

    Guo B S, Sun J Y, Lu Y F, Jiang L 2019 Int. J. Extreme Manuf. 1 032004Google Scholar

    [9]

    Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar

    [10]

    Kravtsov V, Ulbricht R, Atkin J M, Raschke M B 2016 Nat. Nanotechnol. 11 459Google Scholar

    [11]

    Kumar R S S, Rao S V, Giribabu L, Rao D N 2007 Chem. Phys. Lett. 447 274Google Scholar

    [12]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761Google Scholar

    [13]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [14]

    Tang H C, Men T, Liu X L, Hu Y D, Su J Q, Zuo Y L, Li P, Liang J Y, Downer M C, Li Z Y 2022 Light Sci. Appl. 11 244Google Scholar

    [15]

    Castro-Marín P, Castro-Olvera G, Garduño-Mejia J, Rosete-Aguilar M, Bruce N C, Reid D T, Rodríguez-Herrera O G 2017 Opt. Express 25 14473Google Scholar

    [16]

    Ramírez-Guerra C, Rosete-Aguilar M, Garduño-Mejía J 2020 Appl. Opt. 59 1519Google Scholar

    [17]

    Castro-Marín P, Castro-Olvera G, Ruíz C, Garduño-Mejía J, Rosete-Aguilar M, Bruce N C 2017 AIP Adv. 7 105014Google Scholar

    [18]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67Google Scholar

    [19]

    Flores A, Wang M R, Yang J J 2004 Appl. Opt. 43 5618Google Scholar

    [20]

    Wang Z W, Li Q, Yan F 2021 J. Phys. D: Appl. Phys. 54 085103Google Scholar

    [21]

    Vázquez-Villa A, Delgado-Atencio J A, Vázquez-Montiel S, Castro-Ramos J, Cunill-Rodríguez M 2015 Opt. Lett. 40 2842Google Scholar

    [22]

    Aydin T, Akgul Y S 2010 Opt. Express 18 14212Google Scholar

    [23]

    Banerji S, Meem M, Majumder A, Sensale-Rodriguez B, Menon R 2020 Optica 7 214Google Scholar

    [24]

    Moreno-Larios J A, Rosete-Aguilar M, Rodríguez-Herrera O G, Garduño-Mejía J 2020 Appl. Opt. 59 7247Google Scholar

    [25]

    Sheik-bahae M, Said A A, Wei T H, Wu Y Y, Hagan D J, Soileau M J, Stryland E W V 1990 Proc. SPIE Int. Soc. Opt. Eng. 1148 41Google Scholar

    [26]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760Google Scholar

    [27]

    Yin M, Li H P, Tang S H, Ji W 2000 Appl. Phys. B 70 587Google Scholar

  • 图 1  测量DOF的开孔Z扫描实验装置

    Figure 1.  Open-aperture Z-scan setup for measuring DOF.

    图 2  在(a)低光强和(b)高光强条件下, 开孔Z扫描计算公式前m项近似仿真的透射率分布曲线以及洛伦兹函数拟合; 取m = 3时, 理论模拟的不同(c)样品厚度、(d)非线性吸收系数下的透射率分布曲线. 插图为相应的归一化透射率分布

    Figure 2.  Under conditions of (a) low laser intensity and (b) high laser intensity, the simulated transmittance distribution curves for the first m terms of the open-aperture Z-scan calculation formula, and the Lorentzian function fits; simulated transmittance distributions for varying (c) sample thicknesses and (d) nonlinear absorption coefficients when m = 3. The insets show the corresponding normalized transmittance distributions.

    图 3  (a)对光斑直径D进行测量的示意图; (b)光束沿光轴的光强分布模拟及DOF计算值; (c) 1 mm ZnSe的开孔Z扫描曲线及FWHM拟合值

    Figure 3.  (a) Schematic of measuring the diameter D of the light spot; (b) simulation of intensity distribution along the optical axis and calculated DOF; (c) open-aperture Z-scan curve for 1 mm ZnSe and measured FWHM.

    图 4  (a)相同入射光强下, 不同厚度ZnSe的开孔Z扫描结果; (b)归一化至[0, 1]的结果

    Figure 4.  (a) Open-aperture Z-scan results for ZnSe with varying thicknesses at a constant incident light intensity; (b) results normalized to the range [0, 1].

    图 5  (a)相同厚度ZnSe, 不同入射光强下的开孔Z扫描结果; (b)归一化到[0, 1]的结果

    Figure 5.  (a) Open-aperture Z-scan results for ZnSe with varying incident peak intensities at a constant thickness; (b) the results normalized to the range [0, 1].

    图 6  (a)光束沿光轴的光强分布模拟及DOF计算结果; (b) 1 mm 比色皿中的荧光素染料的开孔Z扫描曲线及FWHM拟合值

    Figure 6.  (a) Simulation of intensity distribution along the optical axis and calculated DOF; (b) open-aperture Z-scan curve for fluorescein in a 1 mm cuvette and measured FWHM.

    图 7  开孔Z扫描结果以及对应的洛伦兹拟合曲线 (a) 20倍消色差显微物镜(焦距10 mm); (b)平凸透镜(焦距50 mm); (c)消色差透镜(焦距50 mm); (d)平凸透镜(焦距100 mm)

    Figure 7.  Open-aperture Z-scan results and their Lorentzian fit results: (a) 20× apochromatic microscope objective lens (f = 10 mm); (b) planoconvex lens (f = 50 mm); (c) achromatic lens (f = 50 mm); (d) plano-convex lens (f = 100 mm).

    表 1  焦深计算值DOFCal与实验值DOFExp的比较(DOFCal通过(4)式计算, DOFExp是在图7所示的实验中得出的测量值)

    Table 1.  Depth of focus comparison (the DOFCal calculated using Eq. (4) and the DOFExp measured from the experimental transmittance data in Fig. 7).

    聚焦元件 DOFCal/mm Z扫描实验测量的DOFExp/mm
    洛伦兹拟合FWHM(m = 1, (3)式) 高阶项矫正FWHM(m = 11, (2)式)
    20倍消色差显微物镜
    (f = 10 mm)
    0.36 0.40±0.01 0.34±0.01
    平凸透镜(f = 50 mm) 1.51 1.65±0.04 1.47±0.04
    消色差透镜(f = 50 mm) 1.51 1.53±0.04 1.46±0.02
    平凸透镜(f = 100 mm) 4.58 4.89±0.15 4.58±0.14
    DownLoad: CSV
    Baidu
  • [1]

    Chen B Y, Chakraborty T, Daetwyler S, Manton J D, Dean K, Fiolka R 2020 Biomed. Opt. Express 11 3830Google Scholar

    [2]

    Bo E, Luo Y M, Chen S, Liu X Y, Wang N S, Ge X, Wang X H, Chen S F, Chen S, Li J H, Liu L B 2017 Optica 4 701Google Scholar

    [3]

    刘有海, 秦天翔, 王英策, 亢兴旺, 刘君, 吴佳琛, 曹良才 2023 72 084205Google Scholar

    Liu Y H, Qin T X, Wang Y C, Kang X W, Liu J, Wu J C, Cao L C 2023 Acta Phys. Sin. 72 084205Google Scholar

    [4]

    王华英, 张志会, 廖薇, 宋修法, 郭中甲, 刘飞飞 2012 61 044208Google Scholar

    Wang H Y, Zhang Z H, Liao W, Song X F, Guo Z J, Liu F F 2012 Acta Phys. Sin. 61 044208Google Scholar

    [5]

    韦芊屹, 倪洁蕾, 李灵, 张聿全, 袁小聪, 闵长俊 2023 72 178701Google Scholar

    Wei Q Y, Ni J L, Li L, Zhang Y Q, Yuan X C, Min C J 2023 Acta Phys. Sin. 72 178701Google Scholar

    [6]

    Adachi S, Ishii H, Kanai T, Ishii N, Kosuge A, Watanabe S 2007 Opt. Lett. 32 2487Google Scholar

    [7]

    Cheng J, Liu C S, Shang S, Liu D, Perrie W, Dearden G, Watkins K 2013 Opt. Laser Technol. 46 88Google Scholar

    [8]

    Guo B S, Sun J Y, Lu Y F, Jiang L 2019 Int. J. Extreme Manuf. 1 032004Google Scholar

    [9]

    Gattass R R, Mazur E 2008 Nat. Photonics 2 219Google Scholar

    [10]

    Kravtsov V, Ulbricht R, Atkin J M, Raschke M B 2016 Nat. Nanotechnol. 11 459Google Scholar

    [11]

    Kumar R S S, Rao S V, Giribabu L, Rao D N 2007 Chem. Phys. Lett. 447 274Google Scholar

    [12]

    Bindra K S, Kar A K 2001 Appl. Phys. Lett. 79 3761Google Scholar

    [13]

    Krausz F, Ivanov M 2009 Rev. Mod. Phys. 81 163Google Scholar

    [14]

    Tang H C, Men T, Liu X L, Hu Y D, Su J Q, Zuo Y L, Li P, Liang J Y, Downer M C, Li Z Y 2022 Light Sci. Appl. 11 244Google Scholar

    [15]

    Castro-Marín P, Castro-Olvera G, Garduño-Mejia J, Rosete-Aguilar M, Bruce N C, Reid D T, Rodríguez-Herrera O G 2017 Opt. Express 25 14473Google Scholar

    [16]

    Ramírez-Guerra C, Rosete-Aguilar M, Garduño-Mejía J 2020 Appl. Opt. 59 1519Google Scholar

    [17]

    Castro-Marín P, Castro-Olvera G, Ruíz C, Garduño-Mejía J, Rosete-Aguilar M, Bruce N C 2017 AIP Adv. 7 105014Google Scholar

    [18]

    Fan Z B, Qiu H Y, Zhang H L, Pang X N, Zhou L D, Liu L, Ren H, Wang Q H, Dong J W 2019 Light Sci. Appl. 8 67Google Scholar

    [19]

    Flores A, Wang M R, Yang J J 2004 Appl. Opt. 43 5618Google Scholar

    [20]

    Wang Z W, Li Q, Yan F 2021 J. Phys. D: Appl. Phys. 54 085103Google Scholar

    [21]

    Vázquez-Villa A, Delgado-Atencio J A, Vázquez-Montiel S, Castro-Ramos J, Cunill-Rodríguez M 2015 Opt. Lett. 40 2842Google Scholar

    [22]

    Aydin T, Akgul Y S 2010 Opt. Express 18 14212Google Scholar

    [23]

    Banerji S, Meem M, Majumder A, Sensale-Rodriguez B, Menon R 2020 Optica 7 214Google Scholar

    [24]

    Moreno-Larios J A, Rosete-Aguilar M, Rodríguez-Herrera O G, Garduño-Mejía J 2020 Appl. Opt. 59 7247Google Scholar

    [25]

    Sheik-bahae M, Said A A, Wei T H, Wu Y Y, Hagan D J, Soileau M J, Stryland E W V 1990 Proc. SPIE Int. Soc. Opt. Eng. 1148 41Google Scholar

    [26]

    Sheik-Bahae M, Said A A, Wei T H, Hagan D J, Van Stryland E W 1990 IEEE J. Quantum Electron. 26 760Google Scholar

    [27]

    Yin M, Li H P, Tang S H, Ji W 2000 Appl. Phys. B 70 587Google Scholar

  • [1] Fang Yu, Wu Xing-Zhi, Chen Yong-Qiang, Yang Jun-Yi, Song Ying-Lin. Study on two-photon induced ultrafast carrier dynamcis in Ge-doped GaN by transient absorption spectroscopy. Acta Physica Sinica, 2020, 69(16): 168701. doi: 10.7498/aps.69.20200397
    [2] Zhao Ke, Song Jun, Zhang Han. Effects of donor position and number on two-photon absorption properties of tetraphenylethylene derivatives. Acta Physica Sinica, 2019, 68(18): 183101. doi: 10.7498/aps.68.20190471
    [3] Yang Zhe, Zhang Xiang, Xiao Si, He Jun, Gu Bing. Ultrafast dynamics of free carriers induced by two-photon excitation in bulk ZnSe crystal. Acta Physica Sinica, 2015, 64(17): 177901. doi: 10.7498/aps.64.177901
    [4] Li Yong-Feng, Zhang Jie-Qiu, Qu Shao-Bo, Wang Jia-Fu, Wu Xiang, Xu Zhuo, Zhang An-Xue. Circularly polarized wave reflection focusing metasurfaces. Acta Physica Sinica, 2015, 64(12): 124102. doi: 10.7498/aps.64.124102
    [5] Wu Xiang-Lian, Zhao Ke, Jia Hai-Hong, Wang Fu-Qing. Two-photon absorption properties of novel charge transfer molecules with divinyl sulfide/sulfone center. Acta Physica Sinica, 2015, 64(23): 233301. doi: 10.7498/aps.64.233301
    [6] Jia Ke-Ning, Liu Zhong-Bo, Liang Ying, Tong Dian-Min, Fan Xi-Jun. Effect of Doppler broadening on VIC-dependent two-photon absorption in Y-type four-level system. Acta Physica Sinica, 2012, 61(6): 064204. doi: 10.7498/aps.61.064204
    [7] Wang Hua-Ying, Zhang Zhi-Hui, Liao Wei, Song Xiu-Fa, Guo Zhong-Jia, Liu Fei-Fei. Focal depth of digital lensless Fourier transform micro-holographic system. Acta Physica Sinica, 2012, 61(4): 044208. doi: 10.7498/aps.61.044208
    [8] Li Zhi-Feng, Ma Fa-Jun, Chen Xiao-Shuang, Lu Wei, Cui Hao-Yang. Two-photon absorption coefficient spectra of indirect transitions in silicon. Acta Physica Sinica, 2010, 59(10): 7055-7059. doi: 10.7498/aps.59.7055
    [9] Miao Quan, Zhao Peng, Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Two-photon area evolution and optical limiting of ultrashort laser pulses in DBASVP molecule media. Acta Physica Sinica, 2009, 58(8): 5455-5461. doi: 10.7498/aps.58.5455
    [10] Sun Yuan-Hong, Wang Chuan-Kui. Theoretical study on two-photon absorption properties of novel multi-branched compounds. Acta Physica Sinica, 2009, 58(8): 5304-5310. doi: 10.7498/aps.58.5304
    [11] Sun Yu-Ping, Liu Ji-Cai, Wang Chuan-Kui. Effect of time-dependent ionization on properties of the ultrashort pulse propagation and optical power limiting in a two-photon absorption molecular medium. Acta Physica Sinica, 2009, 58(6): 3934-3942. doi: 10.7498/aps.58.3934
    [12] Cui Hao-Yang, Li Zhi-Feng, Li Ya-Jun, Liu Zhao-Lin, Chen Xiao-Shuang, Lu Wei, Ye Zhen-Hua, Hu Xiao-Ning, Wang Chong. Franz-Keldysh effect in two-photon absorption. Acta Physica Sinica, 2008, 57(1): 238-242. doi: 10.7498/aps.57.238
    [13] Wu Wen-Zhi, Zheng Zhi-Ren, Jin Qin-Han, Yan Yu-Xi, Liu Wei-Long, Zhang Jian-Ping, Yang Yan-Qiang, Su Wen-Hui. The property of third-order optical nonlinear susceptibility of water soluble CdTe quantum dots. Acta Physica Sinica, 2008, 57(2): 1177-1182. doi: 10.7498/aps.57.1177
    [14] Huang Xiao-Ming, Tao Li-Min, Guo Ya-Hui, Gao Yun, Wang Chuan-Kui. Theoretical studies of nonlinear optical properties of a novel double-conjugated-segment molecule. Acta Physica Sinica, 2007, 56(5): 2570-2576. doi: 10.7498/aps.56.2570
    [15] Zhao Ke, Sun Yuan-Hong, Wang Chuan-Kui, Luo Yi, Zhang Xian, Yu Xiao-Qiang, Jiang Min-Hua. Studies on two-photon absorption cross-sections of 1,4-dimethoxy-2,5-divinyl-benzene derivatives. Acta Physica Sinica, 2005, 54(6): 2662-2668. doi: 10.7498/aps.54.2662
    [16] Su Yan, Wang Chuan-Kui, Wang Yan-Hua, Tao Li-Min. The influence of symmetries of the substituted donor and acceptor on two-photon absorption cross sections of trans-stilbene derivatives. Acta Physica Sinica, 2004, 53(7): 2112-2117. doi: 10.7498/aps.53.2112
    [17] Jiang Jun, Li Ning, Chen Gui-Bin, Lu Wei, Wang Ming-Kai, Yang Xue-Ping, Wu Gang, Fan Yao-Hui, Li Yong-Gui, Yuan Xian-Zhang. Free-electron laser induced nonlinear optical absorption in semiconductors. Acta Physica Sinica, 2003, 52(6): 1403-1407. doi: 10.7498/aps.52.1403
    [18] He Guo-Hua, Zhang Jun-Xiang, Ye Li-Hua, Cui Yi-Ping, Li Zhen-Hua, Lai Jian-Cheng, He An-Zhi. Broadband two-photon absorption and optical power limiting properties of a novel organic compound. Acta Physica Sinica, 2003, 52(8): 1929-1933. doi: 10.7498/aps.52.1929
    [19] Zhang Yan-Liang, Jiang Li, Niu Yue-Ping, Sun Zhen-Rong, Ding Liang-En, Wang Zu-Geng. Interference enhancement of two-photon absorption caused by a pair of coherent superposition levels in Na. Acta Physica Sinica, 2003, 52(2): 345-348. doi: 10.7498/aps.52.345
    [20] JIA TIAN-QING, CHEN HONG, WU XIANG. PHOTON ABSORPTION OF CONDUCTION BAND ELECTRONS AND ITS EFFECTS ON THE DAMAGE PRO CESSES. Acta Physica Sinica, 2000, 49(7): 1277-1281. doi: 10.7498/aps.49.1277
Metrics
  • Abstract views:  617
  • PDF Downloads:  21
  • Cited By: 0
Publishing process
  • Received Date:  28 November 2024
  • Accepted Date:  10 January 2025
  • Available Online:  09 February 2025
  • Published Online:  05 April 2025

/

返回文章
返回
Baidu
map