-
Microscopic surface topography plays an important role in studying the functions and properties of materials. Microscopic surface topography measurement has been widely used in many areas, such as machine manufacturing, electronic industry and biotechnology. Optical interferometry is a popular technique for surface topography measurement with an axial resolution up to nanoscale. However, the application of this technique is hampered by phase wrapping, which results in a limited measurement range for this technique. Various digital algorithms for phase unwrapping have been proposed based on the phase continuity between two adjacent points. However, several significant challenges still exist in recovering correct phase with this technique. Optical coherence tomography (OCT) is a non-contact three-dimensional imaging modality with high spatial resolution, and it has been widely used for imaging the biological tissues. In this paper, we demonstrate a method for nanoscale imaging of surface topography by using common-path phase-resolved spectral domain OCT to reduce the influence of phase wrapping. The system includes a superluminescent diode with a central wavelength of 1310 nm and a spectral bandwidth of 62 nm, an optical fiber circulator, a home-made spectrometer, and a reference arm and a sample arm in common-path arrangement. The reference mirror and the sample under investigation are positioned on a same stage in order to further reduce the influence of ambient vibration. The phase difference between two adjacent points is calculated by performing Fourier transform on the measured interferometric spectrum. The phase difference distribution of the surface is obtained first. And then, the surface topography of the sample is constructed by integrating the phase difference distribution. In the traditional methods, phase wrapping occurs if the absolute value of the measured phase is greater than . However, in the present method, phase wrapping occurs if the absolute value of the phase difference between two adjacent points is greater than . The maximal detectable absolute value of the phase difference between two adjacent points increases from for the traditional methods to 2 for the present method. The experimental results indicate that the present system has a high stability and the maximum fluctuation is less than 0.3 nm without averaging. The accuracy of the system is tested with a piezo stage, and the mean absolute deviation of the measured results is 0.62 nm. The performance of the present system is also demonstrated by the surface topography imaging of an optical resolution test target and a roughness comparison specimen. The experimental result shows that the present system is a potential powerful tool for surface topography imaging with an axial resolution better than 1 nm.
-
Keywords:
- spectral domain optical coherence tomography /
- phase-resolved /
- surface topography /
- phase wrapping
[1] Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001
[2] Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146
[3] Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]
[4] Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12
[5] Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]
[6] Groot P D 2015 Adv. Opt. Photon. 7 1
[7] Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750
[8] Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102
[9] Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656
[10] Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820
[11] Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492
[12] Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170
[13] Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120
[14] Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1
[15] Duque D, Garzn J 2013 Opt. Laser Technol. 50 182
[16] Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096
[17] Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]
[18] Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203
[19] Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71
[20] Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502
[21] Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]
[22] Liu S, Yang L X 2007 Opt. Eng. 46 051012
[23] Goldstein G, Creath K 2015 Appl. Opt. 54 5175
[24] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178
[25] Wang R K, An L 2009 Opt. Express 17 8926
[26] Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708
[27] Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232
[28] Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547
[29] Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963
[30] Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800
[31] Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 64 174201]
[32] Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203
[33] Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519
-
[1] Thomas T R 2013 Sur. Topogr. Metrol. Prop. 2 014001
[2] Heintze S D, Forjanic M, Rousson V 2006 Dent. Mater. 22 146
[3] Song R L, Liu P, Zhang K, Liu X K, Chen X H 2016 Chin. J. Mater. Res. 30 255 (in Chinese) [宋瑞利, 刘平, 张柯, 刘新宽, 陈小红 2016 材料研究学报 30 255]
[4] Leyva-Mendivil M F, Lengiewicz J, Page A, Bressloff N W, Limbert G 2017 Tribol. Lett. 65 12
[5] Wang J D, Chen D R, Kong X M 2003 Tribology 23 52 (in Chinese) [汪家道, 陈大融, 孔宪梅 2003 摩擦学学报 23 52]
[6] Groot P D 2015 Adv. Opt. Photon. 7 1
[7] Bruzzone A A G, Costa H L, Lonardo P M, Lucca D A 2008 CIRP Annals-Manufact. Technol. 57 750
[8] Leach R K, Giusca C L, Naoi K 2009 Measur. Sci. Technol. 20 125102
[9] Wang D, He C, Stoykovich M P, Schwartz D K 2015 ACS Nano 9 1656
[10] Guenther K H, Wierer P G, Bennett J M 1984 Appl. Opt. 23 3820
[11] Labella V P, Ding Z, Bullock D W, Emery C, Thibado P M 2000 J. Vacuum Sci. Technol. A 18 1492
[12] Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A, van Haesendonck C 2014 Nanoscale 6 2170
[13] Ando T, Uchihashi T, Scheuring S 2014 Chem. Rev. 114 3120
[14] Butt H J, Cappella B, Kappl M 2005 Surf. Sci. Rep. 59 1
[15] Duque D, Garzn J 2013 Opt. Laser Technol. 50 182
[16] Shi K, Li P, Yin S, Liu Z 2004 Opt. Express 12 2096
[17] Cai H, Guangyao L I, Huang Z 2016 Laser Technol. 40 20 (in Chinese) [蔡怀宇, 李光耀, 黄战华 2016 激光技术 40 20]
[18] Lehmann P, Khnhold P, Xie W 2014 Measur. Sci. Technol. 25 065203
[19] Liu C, Chen L, Wang J, Han Z G, Shi L L 2011 Opto-electronic Eng. 38 71
[20] Lin H, Li Y, Wang D, Tong X, Liu M 2009 Appl. Opt. 48 1502
[21] Zhou Z F, Zhang T, Zhou W D, Li W J 2001 Opto-electronic Eng. 28 7 (in Chinese) [周肇飞, 张涛, 周卫东, 李文杰 2001 光电工程 28 7]
[22] Liu S, Yang L X 2007 Opt. Eng. 46 051012
[23] Goldstein G, Creath K 2015 Appl. Opt. 54 5175
[24] Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W 1991 Science 254 1178
[25] Wang R K, An L 2009 Opt. Express 17 8926
[26] Ortiz S, Siedlecki D, Remon L, Marcos S 2009 Appl. Opt. 48 6708
[27] Ortiz S, Siedlecki D, Prezmerino P, Chia N, Castro A D, Szkulmowski M 2011 Biomed. Opt. Express 2 3232
[28] Sun M, Birkenfeld J, Castro A D, Ortiz S, Marcos S 2014 Biomed. Opt. Express 5 3547
[29] Xue P, Fujimoto J G 2008 Sci. Bull. 53 1963
[30] Povazay B, Bizheva K, Unterhuber A, Hermann B, Sattmann H, Fercher A F, Drexler W, Apolonski A, Wadsworth W J, Knight J C, Russell P S, Vetterlein M, Scherzer E 2002 Opt. Lett. 27 1800
[31] Tang T, Zhao C, Chen Z Y, Li P, Ding Z H 2015 Acta Phys. Sin. 64 174201 (in Chinese) [唐弢, 赵晨, 陈志彦, 李鹏, 丁志华 2015 64 174201]
[32] Ma Z, He Z, Wang S, Wang Y, Li M, Wang Q, Wang F 2012 Opt. Eng. 51 063203
[33] Tomlins P H, Wang R K 2005 J. Phys. D: Appl. Phys. 38 2519
Catalog
Metrics
- Abstract views: 5952
- PDF Downloads: 177
- Cited By: 0