Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Characteristics and influencing factors of excited oxygen atom generation in secondary streamer discharge of mixed gases with different oxygen concentrations

WEI Zhenyu LIU Yakun

Citation:

Characteristics and influencing factors of excited oxygen atom generation in secondary streamer discharge of mixed gases with different oxygen concentrations

WEI Zhenyu, LIU Yakun
cstr: 32037.14.aps.74.20241550
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Streamer discharge has been widely used in fields of sterilization, disinfection, ozone generation, etc. The secondary discharge process significantly affects the effective ozone production duration and efficiency. However, the mechanism of oxygen concentration affecting secondary discharge characteristics and the yield of target products is still unclear. To address this issue, a fluid-based analysis model of the secondary positive streamer discharge process between needle-plate electrodes under varying oxygen concentrations is developed in this work. This model considers the radial electric field and resolves potential non-physical branching issues that may arise in discharge simulations at high oxygen concentrations. In this work, the effect of oxygen concentration on the optical emission characteristics of secondary positive streamers is examined. The optical emission intensity, cathode charge transfer, and the yields of excited-state oxygen atoms (O(3P)) under different oxygen concentrations are investigated and compared with experimental data. The results show that when the oxygen concentration increases from 20% to 90%, the light emission intensity of the secondary discharge decreases by about 0.2%. At the same time, the average electron density in the discharge channel decreases by 90%, the change of electric field intensity is less than 10%, and the duration of single discharge duration is shortened by 77%. Under these conditions, the proportion of O(3P) yield originating from the primary discharge increases from 20% to 38%, and the unit energy yield of excited-state oxygen atoms O(3P) rises by 64%. Although the reduction in discharge duration results in a 50% decrease in absolute O(3P) yield, the increase in unit energy yield far compensates for the decrease in single-discharge yield. The single-discharge yield decreases with oxygen concentration increasing due to the enhanced two- and three-body adsorption effects of oxygen molecules, which reduce the electron density. Additionally, the increased collision probability between electrons and oxygen molecules further affects these characteristic changes.
      Corresponding author: LIU Yakun, lysky00@sjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52377152) and the Lightning and HIRF Protection Design and Testing Technologies of MIIT Special Project on Civil Aircraft, China (Grant No. MJZ5-2N22).
    [1]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 67 045101Google Scholar

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin 67 045101Google Scholar

    [2]

    Samaranayake W, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 254Google Scholar

    [3]

    Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H 2008 IEEE Trans. Plasma Sci. 36 2592Google Scholar

    [4]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201Google Scholar

    [5]

    Meher P, Deshmukh N, Mashalkar A, Kumar D 2023 AIP Conference Proceedings 2764 1Google Scholar

    [6]

    Wang D, Namihira T 2020 Plasma Sources Sci. Technol. 29 023001Google Scholar

    [7]

    Li X, Sun A, Zhang G, Teunissen J 2020 Plasma Sources Sci. Technol. 29 065004Google Scholar

    [8]

    Syssoev V, Naumova M, Kuznetsov Y, Orlov A, Sukharevsky D, Makalsky L, Kukhno A 2022 Inorg. Mater. Appl. Res. 13 1380Google Scholar

    [9]

    Sisoev V, Zavyalova A, Makalsky L, Kuchno A 2021 IOP Conference Series: Earth and Environmental Science 723 042068Google Scholar

    [10]

    Wei Z, Komuro A, Ono R 2023 Plasma Processes Polym. 21 2300113Google Scholar

    [11]

    Abahazem A, Merbahi N, Ducasse O, Eichwald O, Yousfi M 2008 IEEE Trans. Plasma Sci. 36 924Google Scholar

    [12]

    Ono R, Komuro A 2020 J. Phys. D: Appl. Phys. 53 035202Google Scholar

    [13]

    Ono R, Oda T 2003 J. Phys. D: Appl. Phys. 36 1952Google Scholar

    [14]

    Meek J 1940 Phys. Rev. 57 722Google Scholar

    [15]

    Raether H 1939 Zeitschrift für Physik 112 464

    [16]

    Sigmond R 1984 J. Appl. Phys. 56 1355Google Scholar

    [17]

    Nijdam S, Teunissen J, Takahashi E, Ebert U 2016 Plasma Sources Sci. Technol. 25 044001Google Scholar

    [18]

    Eichwald O, Ducasse O, Dubois D, Abahazem A, Merbahi N, Benhenni M, Yousfi M 2008 J. Phys. D: Appl. Phys. 41 234002Google Scholar

    [19]

    Babaeva N Y, Naidis G 1996 J. Phys. D: Appl. Phys. 29 2423Google Scholar

    [20]

    Zhelezniak M, Mnatsakanian A K, Sizykh S V 1982 High Temperature Science 20 357

    [21]

    Ono R, Takezawa K, Oda T 2009 J. Appl. Phys. 106 043302Google Scholar

    [22]

    Komuro A, Ono R, Oda T 2013 J. Phys. D: Appl. Phys. 46 175206Google Scholar

    [23]

    Komuro A, Takahashi K, Ando A 2015 J. Phys. D: Appl. Phys. 48 215203Google Scholar

    [24]

    Wei Z, Komuro A, Ono R 2023 Plasma Sources Sci. Technol. 32 115016Google Scholar

    [25]

    Phelps and Morgan Databases, Murphy T I https://us.lxcat.net/contributors/ [2024-11-04]

    [26]

    Hagelaar G, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [27]

    Bourdon A, Pasko V, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16 656Google Scholar

    [28]

    Yoshida K, Komuro A, Wada N, Naito T, Ando A 2022 J. Electrostat. 117 103716Google Scholar

    [29]

    DeMore W, Sander S, Golden D, Hampson R, Kurylo M, Howard C, Ravishankara A, Kolb C, Molina M 1997 JPL Publication 97 1

    [30]

    Komuro A, Ono R, Oda T 2013 Plasma Sources Sci. Technol. 22 045002Google Scholar

    [31]

    Komuro A, Takahashi K, Ando A 2017 Plasma Sources Sci. Technol. 26 065003Google Scholar

  • 图 1  针电极施加的脉冲电压波形 (a) 0—800 ns的电压波形; (b) 放大x轴后0—100 ns的电压波形

    Figure 1.  Applied voltage $ V(t) $ at the anode (needle) in the simulation: (a) The voltage waveform of 0–800 ns; (b) enlarged voltage waveform of 0–100 ns.

    图 2  用于计算径向电场的包含环绕针电极的三维模型示意图

    Figure 2.  Overview of the calculation region of the three-dimensional model for calculating the distribution of the electric field near the anode.

    图 3  包含环绕针电极的五针模型与单针电极三维模型针尖z = 0处径向电场对比

    Figure 3.  Distribution of radial electric field along z = 0 calculated via the three-dimensional simulation.

    图 4  进行电场抑制前后模拟出的流注对比  (a)未进行径向电场修正; (b)进行径向电场修正后的二次流注

    Figure 4.  Simulated secondary streamer with and without modification: (a) Radial electric field with modification; (b) radial electric field without modification.

    图 5  模拟的大气压条件下0—60 ns时间段ICCD相机拍摄的图像的流注发展过程

    Figure 5.  Simulated emission ICCD figure of the secondary streamer under 20% $ \rm O_2 $ concentration from 0 to 60 ns.

    图 6  实验获得的大气压条件下0—60 ns时间段ICCD相机图像的流注发展过程

    Figure 6.  Emission ICCD figure of the secondary streamer under 20% $ \rm O_2 $ concentration from 0 to 60 ns in the experiment

    图 7  不同氧浓度下模拟与实验获得的阴极转移电荷量对比

    Figure 7.  Comparison between the transferred charge calculated in the simulation and measured in the experiment.

    图 8  积分坐标系之间的关系 (a)轴对称坐标系与视线方向坐标系s; (b)圆柱对称Abel坐标系

    Figure 8.  Relationship between integral coordinate systems: (a) Axisymmetric coordinate system with line-of-sight direction coordinate system s; (b) cylindrically symmetric Abel coordinate system

    图 9  使用Abel及时间积分(快门时间2 ns)前后, 计算的发光强度对比

    Figure 9.  Comparison of calculated luminous intensity before and after using Abel and time integration (gate time 2 ns).

    图 10  不同氧浓度下计算得出的二级流注的发射强度示意图

    Figure 10.  Calculated 2D emission intensity of the secondary streamer under different oxygen concentrations.

    图 11  不同氧浓度下计算与实验得出的二次流注的发射总强度对比

    Figure 11.  Comparison of calculated and experimentally derived total emission intensities for secondary streamer at different oxygen concentrations.

    图 12  不同氧浓度下二次流注过程t = 100 ns时的$ \mathrm{O(^3 P)} $密度分布

    Figure 12.  Spatial distribution of $ \mathrm{O(^3 P)} $ at t = 100 ns during secondary streamer at different oxygen concentrations.

    图 13  不同氧浓度下二次流注过程t = 100 ns时, 对称轴r = 0 mm上的$ \mathrm{O(^3 P)} $密度

    Figure 13.  Density of $ \mathrm{O(^3 P)} $ on the axis of symmetry r = 0 mm at t = 100 ns for secondary streamer process at different oxygen concentrations.

    图 14  不同氧浓度下模型计算与实验得出的二次流注的产出$ \rm O(^3 P) $总量(a)与每单位能量产率对比(b)

    Figure 14.  Comparison between the simulation and measurement results for (a) total number of measured $ \rm O_3 $ and simulated $ \rm O(^3 P) $ molecules and (b) measured $ \rm O_3 $ and simulated $ \rm O(^3 P) $ yields.

    图 15  不同氧浓度下计算与实验[4]得出的放电能量对比

    Figure 15.  Comparison of the discharge energy calculated in the simulation and measured in the experiment at different oxygen concentrations[4].

    图 16  (a) 不同氧浓度下产生的$ \rm O(^3 P) $总量随时间变化; (b) 不同氧浓度下一次流注产生的$ \rm O(^3 P) $产量与总产量比值

    Figure 16.  The dependence of the total amount of $ \rm O(^3 P) $ produced on the time at various oxygen concentrations; (b) fraction of $ \rm O(^3 P) $ produced by the primary streamer to the total amount of $ \rm O(^3 P) $ production at various oxygen concentrations.

    图 17  (a) 不同氧浓度下, E/N (实线)和电子密度(虚线)随时间的变化; (b)不同氧浓度下, 对称轴上z = 3 mm处的$ \rm O(^3 P) $密度随时间的变化

    Figure 17.  (a) Time dependencies of E/N (solid line) and the electron density (dashed line) under various O2 concentrations; (b) time dependencies of $ \rm O(^3 P) $ density at z = 3 mm on the symmetric axis under various O2 concentrations.

    Baidu
  • [1]

    李晗蔚, 孙安邦, 张幸, 姚聪伟, 常正实, 张冠军 2018 67 045101Google Scholar

    Li H W, Sun A B, Zhang X, Yao C W, Chang Z S, Zhang G J 2018 Acta Phys. Sin 67 045101Google Scholar

    [2]

    Samaranayake W, Miyahara Y, Namihira T, Katsuki S, Sakugawa T, Hackam R, Akiyama H 2000 IEEE Trans. Dielectr. Electr. Insul. 7 254Google Scholar

    [3]

    Fukawa F, Shimomura N, Yano T, Yamanaka S, Teranishi K, Akiyama H 2008 IEEE Trans. Plasma Sci. 36 2592Google Scholar

    [4]

    Komuro A, Yoshino A, Wei Z, Ono R 2023 J. Phys. D: Appl. Phys. 56 185201Google Scholar

    [5]

    Meher P, Deshmukh N, Mashalkar A, Kumar D 2023 AIP Conference Proceedings 2764 1Google Scholar

    [6]

    Wang D, Namihira T 2020 Plasma Sources Sci. Technol. 29 023001Google Scholar

    [7]

    Li X, Sun A, Zhang G, Teunissen J 2020 Plasma Sources Sci. Technol. 29 065004Google Scholar

    [8]

    Syssoev V, Naumova M, Kuznetsov Y, Orlov A, Sukharevsky D, Makalsky L, Kukhno A 2022 Inorg. Mater. Appl. Res. 13 1380Google Scholar

    [9]

    Sisoev V, Zavyalova A, Makalsky L, Kuchno A 2021 IOP Conference Series: Earth and Environmental Science 723 042068Google Scholar

    [10]

    Wei Z, Komuro A, Ono R 2023 Plasma Processes Polym. 21 2300113Google Scholar

    [11]

    Abahazem A, Merbahi N, Ducasse O, Eichwald O, Yousfi M 2008 IEEE Trans. Plasma Sci. 36 924Google Scholar

    [12]

    Ono R, Komuro A 2020 J. Phys. D: Appl. Phys. 53 035202Google Scholar

    [13]

    Ono R, Oda T 2003 J. Phys. D: Appl. Phys. 36 1952Google Scholar

    [14]

    Meek J 1940 Phys. Rev. 57 722Google Scholar

    [15]

    Raether H 1939 Zeitschrift für Physik 112 464

    [16]

    Sigmond R 1984 J. Appl. Phys. 56 1355Google Scholar

    [17]

    Nijdam S, Teunissen J, Takahashi E, Ebert U 2016 Plasma Sources Sci. Technol. 25 044001Google Scholar

    [18]

    Eichwald O, Ducasse O, Dubois D, Abahazem A, Merbahi N, Benhenni M, Yousfi M 2008 J. Phys. D: Appl. Phys. 41 234002Google Scholar

    [19]

    Babaeva N Y, Naidis G 1996 J. Phys. D: Appl. Phys. 29 2423Google Scholar

    [20]

    Zhelezniak M, Mnatsakanian A K, Sizykh S V 1982 High Temperature Science 20 357

    [21]

    Ono R, Takezawa K, Oda T 2009 J. Appl. Phys. 106 043302Google Scholar

    [22]

    Komuro A, Ono R, Oda T 2013 J. Phys. D: Appl. Phys. 46 175206Google Scholar

    [23]

    Komuro A, Takahashi K, Ando A 2015 J. Phys. D: Appl. Phys. 48 215203Google Scholar

    [24]

    Wei Z, Komuro A, Ono R 2023 Plasma Sources Sci. Technol. 32 115016Google Scholar

    [25]

    Phelps and Morgan Databases, Murphy T I https://us.lxcat.net/contributors/ [2024-11-04]

    [26]

    Hagelaar G, Pitchford L C 2005 Plasma Sources Sci. Technol. 14 722Google Scholar

    [27]

    Bourdon A, Pasko V, Liu N Y, Célestin S, Ségur P, Marode E 2007 Plasma Sources Sci. Technol. 16 656Google Scholar

    [28]

    Yoshida K, Komuro A, Wada N, Naito T, Ando A 2022 J. Electrostat. 117 103716Google Scholar

    [29]

    DeMore W, Sander S, Golden D, Hampson R, Kurylo M, Howard C, Ravishankara A, Kolb C, Molina M 1997 JPL Publication 97 1

    [30]

    Komuro A, Ono R, Oda T 2013 Plasma Sources Sci. Technol. 22 045002Google Scholar

    [31]

    Komuro A, Takahashi K, Ando A 2017 Plasma Sources Sci. Technol. 26 065003Google Scholar

  • [1] Fang Ze, Pan Yong-Quan, Dai Dong, Zhang Jun-Bo. Physics-informed neural networks based on source term decoupled and its application in discharge plasma simulation. Acta Physica Sinica, 2024, 73(14): 145201. doi: 10.7498/aps.73.20240343
    [2] Zhao Li-Fen, Ha Jing, Wang Fei-Fan, Li Qing, He Shou-Jie. Simulation of hollow cathode discharge in oxygen. Acta Physica Sinica, 2022, 71(2): 025201. doi: 10.7498/aps.71.20211150
    [3] Ai Fei, Liu Zhi-Bing, Zhang Yuan-Tao. Numerical study of discharge characteristics of atmospheric dielectric barrier discharges by integrating machine learning. Acta Physica Sinica, 2022, 71(24): 245201. doi: 10.7498/aps.71.20221555
    [4] Tu Jing-Yi, Chen She, Wang Feng. Influence of photoionization rates on positive streamer branching in atmospheric air. Acta Physica Sinica, 2019, 68(9): 095202. doi: 10.7498/aps.68.20190060
    [5] Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao. Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control. Acta Physica Sinica, 2019, 68(17): 174702. doi: 10.7498/aps.68.20190378
    [6] He Shou-Jie, Zhou Jia, Qu Yu-Xiao, Zhang Bao-Ming, Zhang Ya, Li Qing. Simulation on complex dynamics of hollow cathode discharge in argon. Acta Physica Sinica, 2019, 68(21): 215101. doi: 10.7498/aps.68.20190734
    [7] Li Han-Wei, Sun An-Bang, Zhang Xing, Yao Cong-Wei, Chang Zheng-Shi, Zhang Guan-Jun. Three-dimensional PIC/MCC numerical study on the initial process of streamer discharge in a needle-plate electrode in atmospheric air. Acta Physica Sinica, 2018, 67(4): 045101. doi: 10.7498/aps.67.20172309
    [8] Zhao Yue-Feng, Wang Chao, Wang Wei-Zong, Li Li, Sun Hao, Shao Tao, Pan Jie. Numerical simulation on particle density and reaction pathways in methane needle-plane discharge plasma at atmospheric pressure. Acta Physica Sinica, 2018, 67(8): 085202. doi: 10.7498/aps.67.20172192
    [9] He Shou-Jie, Zhang Zhao, Zhao Xue-Na, Li Qing. Spatio-temporal characteristics of microhollow cathode sustained discharge. Acta Physica Sinica, 2017, 66(5): 055101. doi: 10.7498/aps.66.055101
    [10] Yao Cong-Wei, Ma Heng-Chi, Chang Zheng-Shi, Li Ping, Mu Hai-Bao, Zhang Guan-Jun. Simulations of the cathode falling characteristics and its influence factors in atmospheric pressure dielectric barrier glow discharge pulse. Acta Physica Sinica, 2017, 66(2): 025203. doi: 10.7498/aps.66.025203
    [11] Dong Ye, Dong Zhi-Wei, Zhou Qian-Hong, Yang Wen-Yuan, Zhou Hai-Jing. Ionization parameters of high power microwave flashover on dielectric window surface calculated by particle-in-cell simulation for fluid modeling. Acta Physica Sinica, 2014, 63(6): 067901. doi: 10.7498/aps.63.067901
    [12] Chen Shi, Wang Hui, Shen Sheng-Qiang, Liang Gang-Tao. The drop oscillation model and the comparison with the numerical simulations. Acta Physica Sinica, 2013, 62(20): 204702. doi: 10.7498/aps.62.204702
    [13] Liu Fu-Cheng, Yan Wen, Wang De-Zhen. Two-dimensional simulation of atmospheric pressure cold plasma jets in a needle-plane electrode configuration. Acta Physica Sinica, 2013, 62(17): 175204. doi: 10.7498/aps.62.175204
    [14] Li Yuan, Mu Hai-Bao, Deng Jun-Bo, Zhang Guan-Jun, Wang Shu-Hong. Simulational study on streamer discharge in transformer oil under positive nanosecond pulse voltage. Acta Physica Sinica, 2013, 62(12): 124703. doi: 10.7498/aps.62.124703
    [15] Zhang Zeng-Hui, Shao Xian-Jun, Zhang Guan-Jun, Li Ya-Xi, Peng Zhao-Yu. One-dimensional simulation of dielectric barrier glow discharge in atmospheric pressure Ar. Acta Physica Sinica, 2012, 61(4): 045205. doi: 10.7498/aps.61.045205
    [16] Xia Guang-Qing, Xue Wei-Hua, Chen Mao-Lin, Zhu Yu, Zhu Guo-Qiang. Numerical simulation study on characteristic parameters of microcavity discharge in argon. Acta Physica Sinica, 2011, 60(1): 015201. doi: 10.7498/aps.60.015201
    [17] Shao Xian-Jun, Ma Yue, Li Ya-Xi, Zhang Guan-Jun. One-dimensional simulation of low pressure xenon dielectric barrier discharge. Acta Physica Sinica, 2010, 59(12): 8747-8754. doi: 10.7498/aps.59.8747
    [18] Zhang Yuan-Tao, Wang De-Zhen, Wang Yan-Hui. Numerical simulation of filamentary discharge controlled by dielectric barrier at atmospheric pressure. Acta Physica Sinica, 2005, 54(10): 4808-4815. doi: 10.7498/aps.54.4808
    [19] Zhou Li-Na, Wang Xin-Bing. A fluid model for the simulation of discharges in microhollow cathode. Acta Physica Sinica, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [20] Wang Yan-Hui, Wang De-Zhen. Numerical simulation of dielectric-barrier-controlled glow discharge at atmosphe ric pressure. Acta Physica Sinica, 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
Metrics
  • Abstract views:  543
  • PDF Downloads:  11
  • Cited By: 0
Publishing process
  • Received Date:  04 November 2024
  • Accepted Date:  13 December 2024
  • Available Online:  23 December 2024
  • Published Online:  20 February 2025

/

返回文章
返回
Baidu
map