搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热化学模型对高超声速磁流体控制数值模拟影响分析

丁明松 江涛 董维中 高铁锁 刘庆宗 傅杨奥骁

引用本文:
Citation:

热化学模型对高超声速磁流体控制数值模拟影响分析

丁明松, 江涛, 董维中, 高铁锁, 刘庆宗, 傅杨奥骁

Numerical analysis of influence of thermochemical model on hypersonic magnetohydrodynamic control

Ding Ming-Song, Jiang Tao, Dong Wei-Zhong, Gao Tie-Suo, Liu Qing-Zong, Fu Yang-Ao-Xiao
PDF
HTML
导出引用
  • 针对等离子体流场的模拟准确性问题及其对高超声速磁流体控制的影响, 通过数值求解三维非平衡Navier-Stokes流场控制方程和Maxwell电磁场控制方程, 建立了三维低磁雷诺数磁流体数值模拟方法及程序, 分析了不同空气组分化学反应模型和壁面有限催化效率等因素对高超声速磁流体控制的影响. 研究表明: 不同空气组分化学反应模型对高超声速磁流体流场结构、气动力/热特性控制的影响不容忽视; 对于本文计算条件, Park化学反应模型在组分模型一致性、等离子体模拟准确性等方面具有一定优势; 磁控热防护效果, 受壁面有限催化复合系数影响较大, 两者呈非线性关系, 不同表面区域差异较大; 磁场对磁阻力伞及其磁阻力特性影响, 受壁面催化效应的影响相对较小.
    In hypersonic flow, extremely high temperature due to shock aerodynamic heating leads plasma flow to form. By adding energy and momentum to the plas-ma flow field through the magnetic field on aircraft, the control of plasma flow field around aircraft can be realized. This has a broad prospect of applications in hypersonic aerodynamic control, aerothermal protection, and plasma distribution adjustment. Very recently, chemical reaction model and thermodynamic model were suggested to study the hypersonic magnetohydrodynamic control. However, the influence of different models and surface catalytic efficiency on hypersonic magnetohydrodynamic control are rarely analyzed in depth. In this study, a comparison of different chemical reaction models and the influence of surface catalytic efficiency are discussed. Three-dimensional (3D) nu-merical simulation method and program of extra magnetic field coupled with reentry plasma flow under the assumption of low magnetic Reynolds number are developed by solving 3D chemical non-equilibrium Navier-Stokes equations and Maxwell electromagnetic field governing equations. Based on this method, the influence of different gas component models, chemical reaction models, and surface catalytic efficiency on hypersonic magnetohydrodynamic control are analyzed. The results show that the conductivity of plasma, calculated by different gas component models and chemical reaction models, can be quite different from each other, thus can influence the accurate study on the structure of hypersonic magneto flow field as well as the aerothermal and aerodynamic characteristics. Based on the calculation conditions in this paper, the Park chemical model has advantages in the consistency and accuracy in numerical simulation. The magnetic thermal protection is greatly influenced by the surface catalytic efficiency and the correlation between the magnetic thermal protection and the surface catalytic efficiency is nonlinear and can be quite different in different region. As the surface catalytic efficiency increases, the influence of magnetic field on heat flux at stagnation point drops drastically, then increases slowly, which is a joint result of thermal conduction and chemical component diffusion. The influence of magnetic field on magnetohydrodynamic drag character is less affected by the surface catalytic efficiency. As the catalytic efficiency increases, the influence of magnetic field on magnetohydrodynamic drag character drops slowly.
      通信作者: 董维中, dms2008@qq.com
      Corresponding author: Dong Wei-Zhong, dms2008@qq.com
    [1]

    乐嘉陵 2005 再入物理(北京: 国防工业出版社)第23−43页

    Le J L 2005 Reentry Physics (Beijing: National Defence Industry Press)pp23−43 (in Chinese)

    [2]

    Maccormack R W 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario Canada, June 6-9, 2005 p4780

    [3]

    潘勇 2007博士学位论文 (南京: 南京航空航天大学)

    Pan Y 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    董维中 1996 博士学位论文 (北京: 北京航空航天大学)

    Dong W Z 1996 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [5]

    Bisek N J, Boyd I D 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2010 p227

    [6]

    Bisek N J, Poggie J 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2011 p897

    [7]

    Chernyshev A, Kurakin Y, Schmidt A 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24−28, 2012 p5974

    [8]

    Andrea C, Carlo A B 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, June 25−28, 2012 p2733

    [9]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference San Diego, CA, June 24−27, 2013 p3000

    [10]

    Masuda K, Shimosawa Y, Fujino T 2015 46th AIAA Plasmadynamics and Lasers Conference Dallas, TX, June 22−26, 2015 p3366

    [11]

    赫新, 陈坚强, 邓小刚 2005 空气动力学学报 23 267Google Scholar

    He X, Chen J Q, Deng X G 2005 Acta Aerodyn. Sin. 23 267Google Scholar

    [12]

    田正雨 2008 博士学位论文(长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theoret. Appl. Mech. 40 752

    [14]

    黄富来, 黄护林 2009 航空学报 30 183

    Huang F L, Huang H L 2009 Acta Aeronaut. Astronaut. Sin. 30 183

    [15]

    黄浩, 黄护林, 张喜东, 张义宁, 刘振德 2013 推进技术 34 706

    Huang H, Huang H L, Zhang X D, Zhang Y N, Liu Z D 2013 J. Propuls. Technol. 34 706

    [16]

    何淼生, 杨文将, 郑小梅, 刘宇 2013 航空动力学报 28 365

    He M S, Yang W J, Zheng X M, Liu Y 2013 J. Aerosp. Power 28 365

    [17]

    卜少科, 薛雅心 2014 现代电子技术 37 137Google Scholar

    Bu S K, Xue Y X 2014 Modern Electron. Tech. 37 137Google Scholar

    [18]

    李开, 刘伟强 2016 65 064701

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701

    [19]

    李开, 柳军, 刘伟强 2017 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [20]

    姚霄, 刘伟强, 谭建国 2018 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [21]

    高铁锁, 李椿萱, 董维中, 张巧芸 2002 空气动力学学报 20 184Google Scholar

    Gao T S, Li C X, Dong W Z, Zhang Q Y 2002 Acta Aerodyn. Sin. 20 184Google Scholar

    [22]

    高铁锁, 董维中, 丁明松, 江涛 2013 空气动力学学报 31 541Google Scholar

    Gao T S, Dong W Z, Ding M S, Jiang T 2013 Acta Aerodyn. Sin. 31 541Google Scholar

    [23]

    高铁锁, 董维中, 江涛, 丁明松, 刘庆宗 2016 宇航学报 37 1193Google Scholar

    Gao T S, Dong W Z, Jiang T, Ding M S, Liu Q Z 2016 J. Astronaut. 37 1193Google Scholar

    [24]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030

    [25]

    Dunn M G, Kang S W 1973 NASA CR-2232

    [26]

    Park C 1993 J. Thermophys. Heat Transfer 7 385Google Scholar

    [27]

    Gupta R N, Yos J M, Thompson R A 1990 NASA RP-1232

    [28]

    Gokcen T 1995 33rd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 9−12, 1995 p156

    [29]

    丁明松, 董维中, 高铁锁, 刘庆宗 2018 航空学报 39 12588

    Ding M S, Dong W Z, Gao T S, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 12588

    [30]

    丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2017 宇航学报 38 1361

    Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2017 J. Astronaut. 38 1361

    [31]

    Yasunori N, Hirotaka O 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, June 25−28, 2012 p2734

    [32]

    Candler G V, MacCormack R W 1988 26th AIAA Aerospace Sciences Meeting Reno, Nevada, January 11−14, 1988 p511

  • 图 1  磁场配置(${B_0} = 0.2\;{\rm{T}}$)

    Fig. 1.  Magnetic field (${B_0} = 0.2\;{\rm{T}}$).

    图 2  球柱阻力特性 (a) 磁阻力伞; (b) 阻力系数

    Fig. 2.  Drag characteristics of ball-column model: (a) Magneto-resistance parachute; (b) drag coefficient.

    图 3  不同网格条件下的参数 (a) 电导率; (b) 电子数密度; (c) 热流

    Fig. 3.  Parameter of different grids: (a) Conductivity; (b) ele-ctronic number density; (c) heat flux.

    图 4  驻点线参数分布(${B_0} = 0\;{\rm{T}}$) (a) 电导率; (b) 电子数密度; (c) 温度

    Fig. 4.  Parameter along stagnation line(${B_0} = 0\;{\rm{T}}$): (a) Conductivity; (b) electronic number density; (c) temperature

    图 5  驻点线温度和电子数密度分布(${B_0} = 0.5\;{\rm{ T}}$) (a) 温度; (b) 电子数密度

    Fig. 5.  Temperature and electronic number density along stagnation line (${B_0} = 0.5\;{\rm{T}}$): (a) Temperature; (b) electronic number density.

    图 6  表面热流 (a) Dunn-Kang 模型; (b) Park模型; (c) Gupta模型

    Fig. 6.  Heat flux on wall: (a) Dunn-Kang model; (b) Park model; (c) Gupta model.

    图 7  不同模型的电子数密度 (a) 7组分; (b) 11组分

    Fig. 7.  Electron number density: (a) 7 speices; (b) 11 speices.

    图 8  流场结构云图 (a) Case 1; (b) case 2

    Fig. 8.  Flow structure map: (a) Case 1; (b) case 2.

    图 9  表面压力和热流 (a) 压力; (b) 热流

    Fig. 9.  Surface pressure and heat flux: (a) Pressure; (b) heat flux.

    图 10  不同壁面催化系数条件下驻点线参数分布 (${B_0} = 0\;{\rm{T}}$) (a) 电子数密度; (b) 电导率

    Fig. 10.  Parameter along stagnation line of different catalytic efficiency (${B_0} = 0\;{\rm{T}}$): (a) Electronic number density; (b) conductivity

    图 11  不同催化系数条件下阻力系数及磁场作用效果 (a) 阻力系数; (b) 阻力系数增大百分比

    Fig. 11.  Effect of different catalytic efficiency conditions: (a) Drag coefficient; (b) drag coefficient increment ratio.

    图 12  不同催化复合系数条件下热流受磁场作用的影响 (a) 表面热流; (b) 驻点热流; (c) 磁场效果

    Fig. 12.  Effect of different catalytic efficiency conditions: (a) Surface heat flux; (b) heat flux at stagnation point; (c) magnetic effect.

    图 13  不同催化复合系数条件下驻点线原子组分分布 (a) $\alpha = 0.001$; (b) $\alpha = 0.75$; (c) $\alpha = 0.75$

    Fig. 13.  Atomic components along stagnation line: (a) $\alpha = 0.001$; (b) $\alpha = 0.75$; (c) $\alpha = 0.75$.

    表 1  表面复合反应

    Table 1.  Surface combinative reaction.

    r化学反应式r化学反应式
    1O + O$ \Rightarrow $O25N+ + e$ \Rightarrow $N
    2N + N$ \Rightarrow $N26O2+ + e$ \Rightarrow $O2
    3NO+ + e$ \Rightarrow $NO7N2+ + e$ \Rightarrow $N2
    4O+ + e$ \Rightarrow $O
    下载: 导出CSV

    表 2  球柱阻力系数(${B_0} = 0.2\;{\rm{T}}$)

    Table 2.  Drag coefficient of ball-column model(${B_0} = 0.2\;{\rm{T}}$).

    夹角$\theta $文献结果[31]本文结果差异
    1.82021.82870.47%
    45º1.66701.67060.22%
    90º1.47551.48040.33%
    下载: 导出CSV

    表 3  不同空气化学模型阻力系数

    Table 3.  Drag coefficient under different air chemical models.

    模型${B_0} = 0\;{\rm{T}}$${B_0} = 0.5\;{\rm{T}}$增大比例/%
    7Ns Dunn-Kang0.2974720.47808161
    11Ns Dunn-Kang0.2911290.812020179
    7Ns Gupta0.3010720.51869272
    11Ns Gupta0.2587720.795648207
    7Ns Park0.2900450.48288567
    11Ns Park0.2899860.48915469
    下载: 导出CSV
    Baidu
  • [1]

    乐嘉陵 2005 再入物理(北京: 国防工业出版社)第23−43页

    Le J L 2005 Reentry Physics (Beijing: National Defence Industry Press)pp23−43 (in Chinese)

    [2]

    Maccormack R W 2005 36th AIAA Plasmadynamics and Lasers Conference Toronto, Ontario Canada, June 6-9, 2005 p4780

    [3]

    潘勇 2007博士学位论文 (南京: 南京航空航天大学)

    Pan Y 2007 Ph. D. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)

    [4]

    董维中 1996 博士学位论文 (北京: 北京航空航天大学)

    Dong W Z 1996 Ph. D. Dissertation (Beijing: Beihang University) (in Chinese)

    [5]

    Bisek N J, Boyd I D 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2010 p227

    [6]

    Bisek N J, Poggie J 2011 49th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition Orlando, Florida, January 4−7, 2011 p897

    [7]

    Chernyshev A, Kurakin Y, Schmidt A 2012 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference Tours, France, September 24−28, 2012 p5974

    [8]

    Andrea C, Carlo A B 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, June 25−28, 2012 p2733

    [9]

    Fujino T, Ishikawa M 2013 44th AIAA Plasmadynamics and Lasers Conference San Diego, CA, June 24−27, 2013 p3000

    [10]

    Masuda K, Shimosawa Y, Fujino T 2015 46th AIAA Plasmadynamics and Lasers Conference Dallas, TX, June 22−26, 2015 p3366

    [11]

    赫新, 陈坚强, 邓小刚 2005 空气动力学学报 23 267Google Scholar

    He X, Chen J Q, Deng X G 2005 Acta Aerodyn. Sin. 23 267Google Scholar

    [12]

    田正雨 2008 博士学位论文(长沙: 国防科学技术大学)

    Tian Z Y 2008 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [13]

    陈刚, 张劲柏, 李椿萱 2008 力学学报 40 752

    Chen G, Zhang J B, Li C X 2008 Chin. J. Theoret. Appl. Mech. 40 752

    [14]

    黄富来, 黄护林 2009 航空学报 30 183

    Huang F L, Huang H L 2009 Acta Aeronaut. Astronaut. Sin. 30 183

    [15]

    黄浩, 黄护林, 张喜东, 张义宁, 刘振德 2013 推进技术 34 706

    Huang H, Huang H L, Zhang X D, Zhang Y N, Liu Z D 2013 J. Propuls. Technol. 34 706

    [16]

    何淼生, 杨文将, 郑小梅, 刘宇 2013 航空动力学报 28 365

    He M S, Yang W J, Zheng X M, Liu Y 2013 J. Aerosp. Power 28 365

    [17]

    卜少科, 薛雅心 2014 现代电子技术 37 137Google Scholar

    Bu S K, Xue Y X 2014 Modern Electron. Tech. 37 137Google Scholar

    [18]

    李开, 刘伟强 2016 65 064701

    Li K, Liu W Q 2016 Acta Phys. Sin. 65 064701

    [19]

    李开, 柳军, 刘伟强 2017 66 084702Google Scholar

    Li K, Liu J, Liu W Q 2017 Acta Phys. Sin. 66 084702Google Scholar

    [20]

    姚霄, 刘伟强, 谭建国 2018 67 174702Google Scholar

    Yao X, Liu W Q, Tan J G 2018 Acta Phys. Sin. 67 174702Google Scholar

    [21]

    高铁锁, 李椿萱, 董维中, 张巧芸 2002 空气动力学学报 20 184Google Scholar

    Gao T S, Li C X, Dong W Z, Zhang Q Y 2002 Acta Aerodyn. Sin. 20 184Google Scholar

    [22]

    高铁锁, 董维中, 丁明松, 江涛 2013 空气动力学学报 31 541Google Scholar

    Gao T S, Dong W Z, Ding M S, Jiang T 2013 Acta Aerodyn. Sin. 31 541Google Scholar

    [23]

    高铁锁, 董维中, 江涛, 丁明松, 刘庆宗 2016 宇航学报 37 1193Google Scholar

    Gao T S, Dong W Z, Jiang T, Ding M S, Liu Q Z 2016 J. Astronaut. 37 1193Google Scholar

    [24]

    丁明松, 江涛, 董维中, 高铁锁, 刘庆宗 2017 航空学报 38 121030

    Ding M S, Jiang T, Dong W Z, Gao T S, Liu Q Z 2017 Acta Aeronaut. Astronaut. Sin. 38 121030

    [25]

    Dunn M G, Kang S W 1973 NASA CR-2232

    [26]

    Park C 1993 J. Thermophys. Heat Transfer 7 385Google Scholar

    [27]

    Gupta R N, Yos J M, Thompson R A 1990 NASA RP-1232

    [28]

    Gokcen T 1995 33rd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, January 9−12, 1995 p156

    [29]

    丁明松, 董维中, 高铁锁, 刘庆宗 2018 航空学报 39 12588

    Ding M S, Dong W Z, Gao T S, Liu Q Z 2018 Acta Aeronaut. Astronaut. Sin. 39 12588

    [30]

    丁明松, 董维中, 高铁锁, 江涛, 刘庆宗 2017 宇航学报 38 1361

    Ding M S, Dong W Z, Gao T S, Jiang T, Liu Q Z 2017 J. Astronaut. 38 1361

    [31]

    Yasunori N, Hirotaka O 2012 43rd AIAA Plasmadynamics and Lasers Conference New Orleans, Louisiana, June 25−28, 2012 p2734

    [32]

    Candler G V, MacCormack R W 1988 26th AIAA Aerospace Sciences Meeting Reno, Nevada, January 11−14, 1988 p511

  • [1] 罗仕超, 吴里银, 常雨. 高超声速湍流流动磁流体动力学控制机理.  , 2022, 71(21): 214702. doi: 10.7498/aps.71.20220941
    [2] 牛越, 包为民, 李小平, 刘彦明, 刘东林. 大功率热平衡感应耦合等离子体数值模拟及实验研究.  , 2021, 70(9): 095204. doi: 10.7498/aps.70.20201610
    [3] 丁明松, 江涛, 刘庆宗, 董维中, 高铁锁, 傅杨奥骁. 基于电流积分计算磁矢量势修正的低磁雷诺数方法.  , 2020, 69(13): 134702. doi: 10.7498/aps.69.20200091
    [4] 丁明松, 傅杨奥骁, 高铁锁, 董维中, 江涛, 刘庆宗. 高超声速磁流体力学控制霍尔效应影响.  , 2020, 69(21): 214703. doi: 10.7498/aps.69.20200630
    [5] 喻明浩. 非平衡感应耦合等离子体流场与电磁场作用机理的数值模拟.  , 2019, 68(18): 185202. doi: 10.7498/aps.68.20190865
    [6] 姜春华, 赵正予. 化学复合率对激发赤道等离子体泡影响的数值模拟.  , 2019, 68(19): 199401. doi: 10.7498/aps.68.20190173
    [7] 刘迎, 陈志华, 郑纯. 黏性各向异性磁流体Kelvin-Helmholtz不稳定性: 二维数值研究.  , 2019, 68(3): 035201. doi: 10.7498/aps.68.20181747
    [8] 成玉国, 程谋森, 王墨戈, 李小康. 磁场对螺旋波等离子体波和能量吸收影响的数值研究.  , 2014, 63(3): 035203. doi: 10.7498/aps.63.035203
    [9] 王蓬, 田修波, 汪志健, 巩春志, 杨士勤. 有限尺寸方靶等离子体离子注入动力学的三维粒子模拟研究.  , 2011, 60(8): 085206. doi: 10.7498/aps.60.085206
    [10] 杜宏亮, 何立明, 兰宇丹, 王峰. 约化场强对氮-氧混合气放电等离子体演化特性的影响.  , 2011, 60(11): 115201. doi: 10.7498/aps.60.115201
    [11] 欧阳建明, 邵福球, 邹德滨. 大气等离子体中负氧离子产生和演化过程数值模拟.  , 2011, 60(11): 110209. doi: 10.7498/aps.60.110209
    [12] 兰宇丹, 何立明, 丁伟, 王峰. 不同初始温度下H2/O2混合物等离子体的演化.  , 2010, 59(4): 2617-2621. doi: 10.7498/aps.59.2617
    [13] 杨涓, 石峰, 杨铁链, 孟志强. 电子回旋共振离子推力器放电室等离子体数值模拟.  , 2010, 59(12): 8701-8706. doi: 10.7498/aps.59.8701
    [14] 吴 翊, 荣命哲, 杨 飞, 王小华, 马 强, 王伟宗. 引入6波段P-1辐射模型的三维空气电弧等离子体数值分析.  , 2008, 57(9): 5761-5767. doi: 10.7498/aps.57.5761
    [15] 欧阳建明, 邵福球, 林明东. 含氧等离子体中臭氧形成过程数值模拟.  , 2008, 57(5): 3293-3297. doi: 10.7498/aps.57.3293
    [16] 赵国伟, 王之江, 徐跃民, 粱志伟, 徐 杰. 射频激励等离子体非线性效应的FDTD数值模拟.  , 2007, 56(9): 5304-5308. doi: 10.7498/aps.56.5304
    [17] 张 霆, 丁伯江. 原子过程对极向CXRS测量影响的数值模拟.  , 2006, 55(3): 1534-1538. doi: 10.7498/aps.55.1534
    [18] 欧阳建明, 邵福球, 王 龙, 房同珍, 刘建全. 一维大气等离子体化学过程数值模拟.  , 2006, 55(9): 4974-4979. doi: 10.7498/aps.55.4974
    [19] 黄勤超, 罗家融, 王华忠, 李 翀. EAST装置等离子体放电位形快速识别研究.  , 2006, 55(1): 281-286. doi: 10.7498/aps.55.281
    [20] 王艳辉, 王德真. 介质阻挡均匀大气压辉光放电数值模拟研究.  , 2003, 52(7): 1694-1700. doi: 10.7498/aps.52.1694
计量
  • 文章访问数:  9122
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-16
  • 修回日期:  2019-06-30
  • 上网日期:  2019-09-01
  • 刊出日期:  2019-09-05

/

返回文章
返回
Baidu
map