Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping

Zhu Hong-Qiang Luo Lei Wu Ze-Bang Yin Kai-Hui Yue Yuan-Xia Yang Ying Feng Qing Jia Wei-Yao

Citation:

Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping

Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao
cstr: 32037.14.aps.73.20240992
科大讯飞翻译 (iFLYTEK Translation)
PDF
HTML
Get Citation
  • In order to study the adsorption of NO2 on pristine graphene and doped graphene (N-doped, Zn-doped, and N-Zn co-doped), we simulate the adsorption process by applying the first-principles plane-wave ultrasoft pseudopotentials of the density-functional theory in this work. The adsorption energy, Mulliken distribution, differential charge density, density of states, and optical properties of NO2 molecules adsorbed on the graphene surface are calculated. The results show that the doped graphene surface exhibits higher sensitivity to the adsorption of NO2 compared with the pristine graphene surface, and the order of adsorption energy is as follows: N-Zn co-doped surface > Zn-doped surface > N-doped surface > pristine surface. Pristine graphene surface and N-doped graphene surface have weak interactions with and physical adsorption of NO2. Zn-doped graphene surfac and N-Zn co-doped graphene surface form chemical bonds with NO2 and are chemisorbed. In the visible range, among the three doping modes, the N-Zn co-doped surface is the most effective for improving the optical properties of graphene, with the peak absorption and reflection coefficients improved by about 1.12 and 3.42 times, respectively, compared with pristine graphene. The N-Zn co-doped graphene not only enhances the interaction between the surface and NO2, but also improves the optical properties of the material, which provides theoretical support and experimental guidance for NO2 gas detection and sensing based on graphene substrate.
      Corresponding author: Zhu Hong-Qiang, 20132013@cqnu.edu.cn ; Jia Wei-Yao, wyjia@swu.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Chongqing, China (Grant Nos. CSTB2023SCQ-MSX0207, CSTB2023SCQ-MSX0425), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant Nos. KJQN202200569, KJQN202200507, KJQN202300513, KJZD-K202300516), the Higher Education Teaching Reform Research Project of Chongqing, China (Grant No. 223145), and the “Curriculum Ideological and Political” Demonstration Project of Chongqing Municipal Education Commission, China (Grant No. YKCSZ23102).
    [1]

    Cooper M J, Martin R V, Hammer M S, Levelt P F, Veefkind P, Lamsal L N, Krotkov N A, Brook J R, McLinden C A 2022 Nature 601 380Google Scholar

    [2]

    Gholami F, Tomas M, Gholami Z, Vakili M 2020 Sci. Total. Environ. 714 136712Google Scholar

    [3]

    Wang S, Liu J, Yi H, Tang X L, Yu Q J, Zhao S Z, Gao F Y, Zhou Y S, Zhong T T, Wang Y X 2022 Chemosphere 291 132917Google Scholar

    [4]

    Lim H, Kwon H, Kang H, Jang J E, Kwon H J 2023 Nat. Commun. 14 3114Google Scholar

    [5]

    Gao Z Y, Li L L, Huang H Y, Xu S P, Yan G, Zhao M L, Ding Z 2020 Appl. Surf. Sci. 527 146939Google Scholar

    [6]

    Geng X, Li S W, Mawella-Vithanage L, Ma T, Kilani M, Wang B W, Ma L, Hewa-Rahinduwage C C, Shafikova A, Nikolla E, Mao G Z, Brock S L, Zhang L, Luo L 2021 Nat. Commun. 12 4895Google Scholar

    [7]

    熊枫, 彭志敏, 丁艳军, 杜艳君 2022 71 203302Google Scholar

    Xiong F, Peng Z M, Ding Y J, Du Y J 2022 Acta Phys. Sin. 71 203302Google Scholar

    [8]

    Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuat. B-Chem. 282 917Google Scholar

    [9]

    Choi M S, Kim M Y, Mirzaei A, Kim S I, Baek S H, Chun D W, Jin C H, Lee K H 2021 Appl. Surf. Sci. 568 150910Google Scholar

    [10]

    Brophy R E, Junker B, Fakhri E A, Arnason H Ö, Svavarsson H G, Weimar U, Bârsan N, Manolescu A 2024 Sens. Actuat. B-Chem. 410 135648Google Scholar

    [11]

    Rani S, Kumar M, Garg P, Rani S, Kumar M, Garg P, Parmar R, Kumar A, Singh Y, Baloria V, Deshpande U, Singh V N 2022 ACS Appl. Mater. Interfaces 14 15381Google Scholar

    [12]

    Yu W, Sisi L, Haiyan Y, Luo J 2020 Rsc Adv. 10 15328Google Scholar

    [13]

    Dong Q C, Xiao M, Chu Z Y, Li G C, Zhang Y 2021 Sensors 21 3386Google Scholar

    [14]

    Gui Y G, Peng X, Liu K Ding Z Y 2020 Physicas E 119 113959Google Scholar

    [15]

    Zhu P C, Tang F, Wang S F, Cao W, Wang Q 2022 Mater. Today Commun. 33 104280Google Scholar

    [16]

    Li Q F, Chen W L, Liu W H, Sun M L, Xu M H, Peng H L, Wu H Y, Song S X, Li T H, Tang X H 2022 Appl. Surf. Sci. 586 152689Google Scholar

    [17]

    Hong H S, Ha N H, Thinh, D D, Nam N H, Huong N T, Hue N T, Hoang T V 2021 Nano Energy 87 106165Google Scholar

    [18]

    Zhang T, Sun H, Wang F D, Zhang W D, Tang S W, Ma J M, Gong H W, Zhang J P 2017 Appl. Surf. Sci. 425 340Google Scholar

    [19]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [20]

    Shukri M S M, Saimin M N S, Yaakob M K, Yahya M Z A, Taib M F M 2019 Appl. Surf. Sci. 494 817Google Scholar

    [21]

    Shamim S U D, Roy D, Alam S, Piya A A, Rahman M S, Hossain M K, Ahmed F 2022 Appl. Surf. Sci. 596 153603Google Scholar

    [22]

    Zhang X X, Yu L, Gui Y G, Hu W H 2016 Appl. Surf. Sci. 367 259Google Scholar

    [23]

    Jia X, An L 2019 Mod. Phys. Lett. B 33 1950044Google Scholar

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mat. 14 2717Google Scholar

    [25]

    Yang Z H, Wang Z Y, Su X P 2012 J. Cent. South Univ. 19 1796Google Scholar

    [26]

    Basiuk V A, Henao-Holguin L V 2014 J. Comput. Theor. Nanosci. 11 1609Google Scholar

    [27]

    朱洪强, 冯庆 2014 63 133101Google Scholar

    Zhu H Q, Feng Q 2014 Acta Phys. Sin. 63 133101Google Scholar

    [28]

    Gao X, Zhou Q, Wang J X, Xu L N, Zeng W 2020 Appl. Surf. Sci. 517 146180Google Scholar

    [29]

    Zheng T, Traian D, Thomas F 2021 Phys. Chem. Chem. Phys. 23 19627Google Scholar

    [30]

    Ping L K, Mohamed M A, Mondal A K, Taib M F M, Samat M H, Berhanuddin D D, Menon P S, Bahru R 2021 Micromachines 12 348Google Scholar

  • 图 1  石墨烯表面吸附NO2分子结构的俯视图和侧视图 (a) 未掺杂石墨烯; (b) N掺杂石墨烯; (c) Zn掺杂石墨烯; (d) N-Zn双掺杂石墨烯

    Figure 1.  Structure of NO2 adsorbed on graphene surface: (a) Pristine graphene; (b) N-doped graphene; (c) Zn-doped graphene; (d) N-Zn co-doped graphene.

    图 2  优化后石墨烯表面吸附NO2分子结构的俯视图和侧视图 (a) 未掺杂石墨烯; (b) N掺杂石墨烯; (c) Zn掺杂石墨烯; (d) N-Zn双掺杂石墨烯

    Figure 2.  Top and side views of the molecular structure of NO2 adsorbed on the optimized graphene surface: (a) Pristine graphene; (b) N-doped graphene; (c) Zn-doped graphene; (d) N-Zn co-doped graphene.

    图 3  石墨烯表面吸附NO2分子 (a) 总电子密度等面图(TCD)、(b) 电荷密度差图(CDD)和(c)电子密度差图(ECD). TCD图等面设为0.02 e3; CDD图等面设为0.01 e3, 蓝色代表电子积累, 黄色代表电子耗尽; ECD图红色代表电荷聚集, 蓝色代表电荷耗尽

    Figure 3.  (a) Charge density difference (CDD), (b) total charge density (TCD), and (c) electron density difference (EDD) plots of NO2 molecules adsorbed on different graphene surfaces. The isosurfaces of TCD plots are set to 0.02 e3; the isosurfaces of CDD plots are set to 0.01 e3, blue represents electron accumulation and yellow represents electron depletion; in EDD plots, red represents charge accumulation and blue represents charge depletion.

    图 4  石墨烯表面吸附NO2分子的分态密度 (a) 未掺杂石墨烯; (b) N掺杂石墨烯; (c) Zn掺杂石墨烯; (d) N-Zn双掺杂石墨烯

    Figure 4.  Fractional density of adsorbed NO2 molecules on graphene surfaces: (a) Pristine graphene; (b) N-doped graphene; (c) Zn-doped graphene; (d) N-Zn co-doped graphene.

    图 5  石墨烯的介电函数虚部

    Figure 5.  The imaginary parts of the dielectric function of graphene.

    图 6  石墨烯的(a)吸收谱和(b)反射谱

    Figure 6.  (a) Absorption spectrum and (b) reflection spectrum of graphene.

    表 1  石墨烯表面吸附NO2的距离和吸附能

    Table 1.  The distance and adsorption energy of NO2 adsorption on graphene surface.

    模型 初始距离/Å 优化后距离/Å 吸附能/eV
    未掺杂石墨烯 3.00 2.96 –0.22
    N掺杂 3.00 2.73 –0.69
    Zn掺杂 3.00 1.94 –4.80
    N-Zn双掺杂 3.00 1.93 –4.97
    DownLoad: CSV

    表 2  NO2分子的Mulliken的电荷分布

    Table 2.  Mulliken charge distribution of NO2.

    模型 种类 s电子 p电子 总电子 电荷/e 分子带电荷/e 布居数 键长/Å
    NO2 N 1.39 3.18 4.57 0.44 0 0.68 1.23
    O 1.85 4.36 6.22 –0.22
    O 1.85 4.36 6.22 –0.22
    未掺杂石墨烯 N 1.46 3.21 4.67 0.33 –0.25 0.63 1.24
    O 1.86 4.44 6.29 –0.29
    O 1.86 4.44 6.29 –0.29
    N掺杂 N 1.51 3.23 4.74 0.26 –0.48 0.60 1.25
    O 1.86 4.53 6.39 –0.38
    O 1.86 4.51 6.36 –0.36
    Zn掺杂 N 1.48 3.40 4.88 0.12 –0.59 0.67 1.26
    O 1.86 4.50 6.36 –0.36
    O 1.86 4.49 6.35 –0.35
    N-Zn
    双掺杂
    N 1.49 3.40 4.88 0.11 –0.60 0.67 1.27
    O 1.86 4.51 6.37 –0.37
    O 1.86 4.48 6.34 –0.34
    DownLoad: CSV
    Baidu
  • [1]

    Cooper M J, Martin R V, Hammer M S, Levelt P F, Veefkind P, Lamsal L N, Krotkov N A, Brook J R, McLinden C A 2022 Nature 601 380Google Scholar

    [2]

    Gholami F, Tomas M, Gholami Z, Vakili M 2020 Sci. Total. Environ. 714 136712Google Scholar

    [3]

    Wang S, Liu J, Yi H, Tang X L, Yu Q J, Zhao S Z, Gao F Y, Zhou Y S, Zhong T T, Wang Y X 2022 Chemosphere 291 132917Google Scholar

    [4]

    Lim H, Kwon H, Kang H, Jang J E, Kwon H J 2023 Nat. Commun. 14 3114Google Scholar

    [5]

    Gao Z Y, Li L L, Huang H Y, Xu S P, Yan G, Zhao M L, Ding Z 2020 Appl. Surf. Sci. 527 146939Google Scholar

    [6]

    Geng X, Li S W, Mawella-Vithanage L, Ma T, Kilani M, Wang B W, Ma L, Hewa-Rahinduwage C C, Shafikova A, Nikolla E, Mao G Z, Brock S L, Zhang L, Luo L 2021 Nat. Commun. 12 4895Google Scholar

    [7]

    熊枫, 彭志敏, 丁艳军, 杜艳君 2022 71 203302Google Scholar

    Xiong F, Peng Z M, Ding Y J, Du Y J 2022 Acta Phys. Sin. 71 203302Google Scholar

    [8]

    Zhao S K, Shen Y B, Zhou P F, Zhong X X, Han C, Zhao Q, Wei D Z 2019 Sens. Actuat. B-Chem. 282 917Google Scholar

    [9]

    Choi M S, Kim M Y, Mirzaei A, Kim S I, Baek S H, Chun D W, Jin C H, Lee K H 2021 Appl. Surf. Sci. 568 150910Google Scholar

    [10]

    Brophy R E, Junker B, Fakhri E A, Arnason H Ö, Svavarsson H G, Weimar U, Bârsan N, Manolescu A 2024 Sens. Actuat. B-Chem. 410 135648Google Scholar

    [11]

    Rani S, Kumar M, Garg P, Rani S, Kumar M, Garg P, Parmar R, Kumar A, Singh Y, Baloria V, Deshpande U, Singh V N 2022 ACS Appl. Mater. Interfaces 14 15381Google Scholar

    [12]

    Yu W, Sisi L, Haiyan Y, Luo J 2020 Rsc Adv. 10 15328Google Scholar

    [13]

    Dong Q C, Xiao M, Chu Z Y, Li G C, Zhang Y 2021 Sensors 21 3386Google Scholar

    [14]

    Gui Y G, Peng X, Liu K Ding Z Y 2020 Physicas E 119 113959Google Scholar

    [15]

    Zhu P C, Tang F, Wang S F, Cao W, Wang Q 2022 Mater. Today Commun. 33 104280Google Scholar

    [16]

    Li Q F, Chen W L, Liu W H, Sun M L, Xu M H, Peng H L, Wu H Y, Song S X, Li T H, Tang X H 2022 Appl. Surf. Sci. 586 152689Google Scholar

    [17]

    Hong H S, Ha N H, Thinh, D D, Nam N H, Huong N T, Hue N T, Hoang T V 2021 Nano Energy 87 106165Google Scholar

    [18]

    Zhang T, Sun H, Wang F D, Zhang W D, Tang S W, Ma J M, Gong H W, Zhang J P 2017 Appl. Surf. Sci. 425 340Google Scholar

    [19]

    Choudhuri I, Patra N, Mahata A, Ahuja R, Pathak B 2015 J. Phys. Chem. C 119 24827Google Scholar

    [20]

    Shukri M S M, Saimin M N S, Yaakob M K, Yahya M Z A, Taib M F M 2019 Appl. Surf. Sci. 494 817Google Scholar

    [21]

    Shamim S U D, Roy D, Alam S, Piya A A, Rahman M S, Hossain M K, Ahmed F 2022 Appl. Surf. Sci. 596 153603Google Scholar

    [22]

    Zhang X X, Yu L, Gui Y G, Hu W H 2016 Appl. Surf. Sci. 367 259Google Scholar

    [23]

    Jia X, An L 2019 Mod. Phys. Lett. B 33 1950044Google Scholar

    [24]

    Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J, Payne M C 2002 J. Phys. Condens. Mat. 14 2717Google Scholar

    [25]

    Yang Z H, Wang Z Y, Su X P 2012 J. Cent. South Univ. 19 1796Google Scholar

    [26]

    Basiuk V A, Henao-Holguin L V 2014 J. Comput. Theor. Nanosci. 11 1609Google Scholar

    [27]

    朱洪强, 冯庆 2014 63 133101Google Scholar

    Zhu H Q, Feng Q 2014 Acta Phys. Sin. 63 133101Google Scholar

    [28]

    Gao X, Zhou Q, Wang J X, Xu L N, Zeng W 2020 Appl. Surf. Sci. 517 146180Google Scholar

    [29]

    Zheng T, Traian D, Thomas F 2021 Phys. Chem. Chem. Phys. 23 19627Google Scholar

    [30]

    Ping L K, Mohamed M A, Mondal A K, Taib M F M, Samat M H, Berhanuddin D D, Menon P S, Bahru R 2021 Micromachines 12 348Google Scholar

  • [1] Wan Yu-Wei, Wang Rui, Zhou Wen-Quan, Wang Yi-Ping, Cai Ya-Nan, Wang Chang. First-principles study on NH3 adsorption on Ag- and Cu-doped graphene oxide. Acta Physica Sinica, 2025, 74(7): . doi: 10.7498/aps.74.20241737
    [2] Wu Yu-Yang, Li Wei, Ren Qing-Ying, Li Jin-Ze, Xu Wei, Xu Jie. First-principles study on adsorption of gas molecules by metal Sc modified Ti2CO2. Acta Physica Sinica, 2024, 73(7): 073101. doi: 10.7498/aps.73.20231432
    [3] Zhao Jun, Yao Can, Zeng Hui. Theoretical study of adsorption properties and electrical transport performance of toxic gas molecules on novel orthorhombic BN monolayer semiconductor. Acta Physica Sinica, 2024, 73(12): 126802. doi: 10.7498/aps.73.20231621
    [4] Chen Jin-Long, Tao Ran, Li Chong, Zhang Jian-Lei, Fu Chen, Luo Jing-Ting. SnS2/In2O3 based gas sensors and its high performance of detecting NO2 at room temperature. Acta Physica Sinica, 2024, 73(10): 106801. doi: 10.7498/aps.73.20231554
    [5] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2022, 71(3): 036801. doi: 10.7498/aps.71.20211631
    [6] Bian Xiao-Ge, Zhou Sheng, Zhang Lei, He Tian-Bo, Li Jin-Song. NO2 gas detection based on standard sample regression algorithm and cavity enhanced spectroscopy. Acta Physica Sinica, 2021, 70(5): 050702. doi: 10.7498/aps.70.20201322
    [7] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, 2021, (): . doi: 10.7498/aps.70.20211631
    [8] Liu Zhi-Fu, Li Pei, Cheng Tie-Dong, Huang Wen. NO2 sensing properties of porous Fe-doped indium oxide. Acta Physica Sinica, 2020, 69(24): 248101. doi: 10.7498/aps.69.20200956
    [9] Sheng Zhe, Dai Xian-Ying, Miao Dong-Ming, Wu Shu-Jing, Zhao Tian-Long, Hao Yue. First-principles study of hydrogen storage properties of silicene under different Li adsorption components. Acta Physica Sinica, 2018, 67(10): 107103. doi: 10.7498/aps.67.20172720
    [10] Wang Xiao-Ka, Tang Fu-Ling, Xue Hong-Tao, Si Feng-Juan, Qi Rong-Fei, Liu Jing-Bo. First-principles study of H, Cl and F passivation for Cu2ZnSnS4(112) surface states. Acta Physica Sinica, 2018, 67(16): 166401. doi: 10.7498/aps.67.20180626
    [11] Yang Guang-Min, Liang Zhi-Cong, Huang Hai-Hua. The first-principle calculation on the Li cluster adsorbed on graphene. Acta Physica Sinica, 2017, 66(5): 057301. doi: 10.7498/aps.66.057301
    [12] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, 2016, 65(1): 018201. doi: 10.7498/aps.65.018201
    [13] He Yan-Bin, Jia Jian-Feng, Wu Hai-Shun. First-principles study of stability and electronic structure of N2H4 adsorption on NiFe(111) alloy surface. Acta Physica Sinica, 2015, 64(20): 203101. doi: 10.7498/aps.64.203101
    [14] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, 2015, 64(1): 013101. doi: 10.7498/aps.64.013101
    [15] Huang Xiang-Qian, Lin Chen-Fang, Yin Xiu-Li, Zhao Ru-Guang, Wang En-Ge, Hu Zong-Hai. Hydrogen adsorption on one-dimensional graphene superlattices. Acta Physica Sinica, 2014, 63(19): 197301. doi: 10.7498/aps.63.197301
    [16] Luo Qiang, Tang Bin, Zhang Zhi, Ran Zeng-Ling. First principles calculation of adsorption for H2S on Fe(100) surface. Acta Physica Sinica, 2013, 62(7): 077101. doi: 10.7498/aps.62.077101
    [17] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, 2013, 62(3): 036301. doi: 10.7498/aps.62.036301
    [18] Wu Jiang-Bin, Qian Yao, Guo Xiao-Jie, Cui Xian-Hui, Miao Ling, Jiang Jian-Jun. First-principles study on the Li-storage performance of silicon clusters and graphene composite structure. Acta Physica Sinica, 2012, 61(7): 073601. doi: 10.7498/aps.61.073601
    [19] Cao Yi-Jie, Ren Bao-Xing, Chen Yu-Hong. First-principles study on the catalytic role of Ti in the hydrogenation of Al(110) surfaces. Acta Physica Sinica, 2010, 59(11): 8015-8020. doi: 10.7498/aps.59.8015
    [20] Wei Yan-Wei, Yang Zong-Xian. The adsorption of Au on Zr-doped CeO2(110) surface: A first-principle study. Acta Physica Sinica, 2008, 57(11): 7139-7144. doi: 10.7498/aps.57.7139
Metrics
  • Abstract views:  1685
  • PDF Downloads:  43
  • Cited By: 0
Publishing process
  • Received Date:  16 July 2024
  • Accepted Date:  06 September 2024
  • Available Online:  18 September 2024
  • Published Online:  20 October 2024

/

返回文章
返回
Baidu
map