-
It is of great significance to study the characteristics and working mechanism of NO2 sensor material for monitoring air pollution and protecting human health. As a metal oxide semiconductor material with simple preparation, low cost and good long-term stability, In2O3 has been widely studied in the detection of NO2. In order to explore the influence of Fe content on the gas sensing properties of porous In2O3 material, porous Fe-doped In2O3 nanoparticles are synthesized by the hydrothermal method, and the NO2 sensor is fabricated by using the above nanoparticles. The X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy and specific surface area measurement are used to characterize the micro morphology of the prepared nanoparticles in this paper, while the sensor performance is studied, including temperature, response recovery, selectivity and stability. In most samples, Fe atoms are completely doped into the In2O3 lattice as indicated by the XRD results. The SEM results show that the Fe-doped In2O3 nanoparticles prepared with Span-40 as activators are square in size of 50–200 nm, and a large number of small pores are distributed in it, which are also observed in the N2 adsorption/desorption experiment, this is one of the main reasons for the large specific surface area and high sensitivity of the nano materials. Studying the performance of the sensor, we find that when the molar ratio of In∶Fe is 9∶1, the sensor made of porous Fe-doped In2O3 nanoparticles has an excellent selectivity and short response recovery time for NO2 gas. The sensitivity of the sensor to 50-ppm-concentration (1 ppm = 1 mg/L) NO2 can reach 960.5 at 260 ℃, and the response time and recovery time are 5 s and 6 s respectively. Based on the theory of space charge and the knowledge of built-in barrier and energy band change before and after doping, the mechanism of the sensor is analyzed.
-
Keywords:
- Fe-doped In2O3 /
- porous /
- NO2 /
- sensor
[1] Xu X M, Zhang H J, Diao Q, Zhu Y S, Yang G 2019 Mater. Res. Express 6 17Google Scholar
[2] Bo Z, Guo X Z, Wei X, Yang H C, Yan J H, Cen K F 2019 Physica E 109 156Google Scholar
[3] Borgohain R, Das R, Mondal B, Yordsri V, Thanachayanont C, Baruah S 2018 IEEE Sens. J. 18 7203Google Scholar
[4] 赵博硕, 强晓永, 秦岳, 胡明 2018 67 058101Google Scholar
Zhao B S, Qiang X Y, Qin Y, Hu M 2018 Acta Phys. Sin. 67 058101Google Scholar
[5] Zhou P F, Shen Y B, Lu W, Zhao S K, Li T T, Zhong X X, Cui B Y, Wei D Z, Zhang Y H 2020 J. Alloys Compd. 828 154395Google Scholar
[6] Hung N M, Hieu N M, Chinh N D, Hien T T, Quang N D, Majumder S, Choi G, Kim C, Kim D 2020 Sens. Actuators, B 313 128001Google Scholar
[7] Chen K X, Lu H, Li G, Zhang J N, Tian Y H, Gao Y, Guo Q M, Lu H B, Gao J Z 2020 Sens. Actuator, B 308 127716Google Scholar
[8] Nam B, Ko T K, Hyun S K, Lee C 2019 Nano Converg. 6 40Google Scholar
[9] Shen Y B, Zhong X X, Zhang J, Li T T, Zhao S K, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2019 Appl. Surf. Sci. 498 143873Google Scholar
[10] Pawar K K, Shaikh J S, Mali S S, Navale Y H, Patil V B, Hong C K, Patil P S 2019 J. Alloys Compd. 806 726Google Scholar
[11] Yang W, Chen H T, Li C L, Meng H 2020 Mater. Lett. 271 127782Google Scholar
[12] Park B G, Reddeppa M, Kim Y H, Kim S G, Kim M D 2020 Nanotechnology 31 335503Google Scholar
[13] Zhao S K, Shen Y B, Zhou P F, Hao F L, Xu X Y, Gao S L, Wei D Z, Ao Y X, Shen Y S 2020 Sens. Actuator, B 308 127729Google Scholar
[14] Bi H S, Shen Y B, Zhao S K, Zhou P F, Gao S L, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2020 Vacuum 172 109086Google Scholar
[15] Cheng M, Wu Z P, Liu G N, Zhao L J, Gao Y, Li S, Zhang B, Yan X, Lu G Y 2020 Sens. Actuator, B 304 127272Google Scholar
[16] Ri J S, Li X W, Shao C L, Liu Y, Han C H, Li X H, Liu Y C 2020 Sens. Actuator, B 317 128194Google Scholar
[17] Sabry R S, Agool I R, Abbas A M 2019 Silicon 11 2475Google Scholar
[18] Lee O H, Tseng W J 2019 J. Mater. Sci.-Mater. Electron. 30 15145Google Scholar
[19] Inyawilert K, Channei D, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S 2016 J. Nanopart. Res. 18 40Google Scholar
[20] Yoo Y K, Xue Q Z, Lee H C, Cheng S F, Xiang X D, Dionne G F, Xu S F, He J, Chu Y S, Preite S D, Lofland S E, Takeuchi I 2005 Appl. Phys. Lett. 86 042506Google Scholar
[21] Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S 2008 Microporous Mesoporous Mater. 109 84Google Scholar
[22] Cao M H, Wang Y D, Chen T, Antonietti M, Niederberger M 2008 Chem. Mater. 20 5781Google Scholar
[23] Jia X, Fan H 2010 Mater. Res. Bull. 45 1496Google Scholar
[24] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong V, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuator, B 160 580Google Scholar
[25] Bai S L, Zhang K W, Luo R X, Li D Q, Chen A F, Liu C C 2012 J. Mater. Chem. 22 12643Google Scholar
[26] Xiao B X, Zhao Q, Wang D X, Ma G S, Zhang M Z 2017 New J. Chem. 41 8530Google Scholar
[27] Zhao J, Yang T L, Liu Y P, Wang Z Y, Li X W, Sun Y F, Du Y, Li Y C, Lu G Y 2014 Sens. Actuator, B 191 806Google Scholar
[28] Han D M, Zhai L L, Gu F B, Wang Z H 2018 Sens. Actuator, B 262 655Google Scholar
[29] Hu J, Liang Y F, Sun Y J, Zhao Z T, Zhang M, Li P W, Zhang W D, Chen Y, Zhuiykov S 2017 Sens. Actuator, B 252 116Google Scholar
[30] Fahed C, Qadri S B, Kim H, Piqué A, Miller M, Mahadik N A, Rao M V, Osofsky M 2010 Phys. Status Solidi C 7 2298Google Scholar
-
表 1 样品原材料组成表
Table 1. Composition of sample raw materials.
样品编号 组成及用量/g In/Fe摩尔比 In(NO3)3·4.5H2O Fe(NO3)3·9H2O Span-40 样品1 (S1) 0.5729 0 0.6030 — 样品2 (S2) 0.5729 0.1212 0.6030 5∶1 样品3 (S3) 0.5729 0.0866 0.6030 7∶1 样品4 (S4) 0.5729 0.0673 0.6030 9∶1 样品5 (S5) 0.5729 0.0505 0.6030 12∶1 样品6 (S6) 0.5729 0.0404 0.6030 15∶1 -
[1] Xu X M, Zhang H J, Diao Q, Zhu Y S, Yang G 2019 Mater. Res. Express 6 17Google Scholar
[2] Bo Z, Guo X Z, Wei X, Yang H C, Yan J H, Cen K F 2019 Physica E 109 156Google Scholar
[3] Borgohain R, Das R, Mondal B, Yordsri V, Thanachayanont C, Baruah S 2018 IEEE Sens. J. 18 7203Google Scholar
[4] 赵博硕, 强晓永, 秦岳, 胡明 2018 67 058101Google Scholar
Zhao B S, Qiang X Y, Qin Y, Hu M 2018 Acta Phys. Sin. 67 058101Google Scholar
[5] Zhou P F, Shen Y B, Lu W, Zhao S K, Li T T, Zhong X X, Cui B Y, Wei D Z, Zhang Y H 2020 J. Alloys Compd. 828 154395Google Scholar
[6] Hung N M, Hieu N M, Chinh N D, Hien T T, Quang N D, Majumder S, Choi G, Kim C, Kim D 2020 Sens. Actuators, B 313 128001Google Scholar
[7] Chen K X, Lu H, Li G, Zhang J N, Tian Y H, Gao Y, Guo Q M, Lu H B, Gao J Z 2020 Sens. Actuator, B 308 127716Google Scholar
[8] Nam B, Ko T K, Hyun S K, Lee C 2019 Nano Converg. 6 40Google Scholar
[9] Shen Y B, Zhong X X, Zhang J, Li T T, Zhao S K, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2019 Appl. Surf. Sci. 498 143873Google Scholar
[10] Pawar K K, Shaikh J S, Mali S S, Navale Y H, Patil V B, Hong C K, Patil P S 2019 J. Alloys Compd. 806 726Google Scholar
[11] Yang W, Chen H T, Li C L, Meng H 2020 Mater. Lett. 271 127782Google Scholar
[12] Park B G, Reddeppa M, Kim Y H, Kim S G, Kim M D 2020 Nanotechnology 31 335503Google Scholar
[13] Zhao S K, Shen Y B, Zhou P F, Hao F L, Xu X Y, Gao S L, Wei D Z, Ao Y X, Shen Y S 2020 Sens. Actuator, B 308 127729Google Scholar
[14] Bi H S, Shen Y B, Zhao S K, Zhou P F, Gao S L, Cui B Y, Wei D Z, Zhang Y H, Wei K F 2020 Vacuum 172 109086Google Scholar
[15] Cheng M, Wu Z P, Liu G N, Zhao L J, Gao Y, Li S, Zhang B, Yan X, Lu G Y 2020 Sens. Actuator, B 304 127272Google Scholar
[16] Ri J S, Li X W, Shao C L, Liu Y, Han C H, Li X H, Liu Y C 2020 Sens. Actuator, B 317 128194Google Scholar
[17] Sabry R S, Agool I R, Abbas A M 2019 Silicon 11 2475Google Scholar
[18] Lee O H, Tseng W J 2019 J. Mater. Sci.-Mater. Electron. 30 15145Google Scholar
[19] Inyawilert K, Channei D, Tamaekong N, Liewhiran C, Wisitsoraat A, Tuantranont A, Phanichphant S 2016 J. Nanopart. Res. 18 40Google Scholar
[20] Yoo Y K, Xue Q Z, Lee H C, Cheng S F, Xiang X D, Dionne G F, Xu S F, He J, Chu Y S, Preite S D, Lofland S E, Takeuchi I 2005 Appl. Phys. Lett. 86 042506Google Scholar
[21] Sreethawong T, Chavadej S, Ngamsinlapasathian S, Yoshikawa S 2008 Microporous Mesoporous Mater. 109 84Google Scholar
[22] Cao M H, Wang Y D, Chen T, Antonietti M, Niederberger M 2008 Chem. Mater. 20 5781Google Scholar
[23] Jia X, Fan H 2010 Mater. Res. Bull. 45 1496Google Scholar
[24] Wetchakun K, Samerjai T, Tamaekong N, Liewhiran C, Siriwong V, Kruefu V, Wisitsoraat A, Tuantranont A, Phanichphant S 2011 Sens. Actuator, B 160 580Google Scholar
[25] Bai S L, Zhang K W, Luo R X, Li D Q, Chen A F, Liu C C 2012 J. Mater. Chem. 22 12643Google Scholar
[26] Xiao B X, Zhao Q, Wang D X, Ma G S, Zhang M Z 2017 New J. Chem. 41 8530Google Scholar
[27] Zhao J, Yang T L, Liu Y P, Wang Z Y, Li X W, Sun Y F, Du Y, Li Y C, Lu G Y 2014 Sens. Actuator, B 191 806Google Scholar
[28] Han D M, Zhai L L, Gu F B, Wang Z H 2018 Sens. Actuator, B 262 655Google Scholar
[29] Hu J, Liang Y F, Sun Y J, Zhao Z T, Zhang M, Li P W, Zhang W D, Chen Y, Zhuiykov S 2017 Sens. Actuator, B 252 116Google Scholar
[30] Fahed C, Qadri S B, Kim H, Piqué A, Miller M, Mahadik N A, Rao M V, Osofsky M 2010 Phys. Status Solidi C 7 2298Google Scholar
Catalog
Metrics
- Abstract views: 7318
- PDF Downloads: 86
- Cited By: 0