Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide

WAN Yuwei WANG Rui ZHOU Wenquan WANG Yiping CAI Yanan WANG Chang

Citation:

First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide

WAN Yuwei, WANG Rui, ZHOU Wenquan, WANG Yiping, CAI Yanan, WANG Chang
Article Text (iFLYTEK Translation)
PDF
HTML
Get Citation
  • Graphene has attracted great attention due to its large specific surface area, high charge carrier mobility, and excellent electrical conductivity. However, the inherent structural integrity and zero bandgap characteristics of graphene limit its gas sensing properties. Consequently, researchers have embarked on exploring avenues such as doping graphene or using graphene oxide as a gas-sensitive material to design gas sensors that respond optimally to ammonia. This work, based on first-principle density functional theory, focuses on the field of ammonia gas sensors, investigating in detail the adsorption characteristics of ammonia molecules on graphene oxide (GO) and graphene oxide doped with Ag and Cu (AgGO, CuGO). By calculating parameters including charge distribution, density of states, band structures, and adsorption energy, this work delves into the influences of diverse oxygen-containing groups and metal doping on the gas sensing properties of graphene oxide. The research results show that there is a substantial charge density overlap between the density of states of hydroxyl groups in graphene oxide and NH3 molecules, indicating a clear tendency towards chemical adsorption. It is particularly noteworthy that after NH3 adsorption, the graphene oxide containing hydroxyl shows the highest charge transfer (0.078e) and adsorption energy (0.60 eV), which indicates that the adsorption efficacy of NH3 is higher, followed by carboxyl groups and epoxy groups, which mainly participate in physical adsorption. Furthermore, this work delves into the influence of metal doping on graphene oxide, demonstrating that the adsorption capability of doped graphene oxide hinges upon the synergistic influence of oxygen-containing groups and metal atoms, with Ag-doped graphene oxide showing a several-fold increase in adsorption energy. Through the analysis of density of states, it is found that Ag atoms resonate with s, p, and d orbitals of the N atom in NH3, proving the formation of a chemical bond between Ag atom and N atom. Moreover, a comparative analysis shows that Cu-doped graphene oxide (CuGO) has an increased charge transfer of about 0.020e and slightly higher adsorption energy than Ag-doped graphene oxide (AgGO) when adsorbing NH3. Intriguingly, under the same doping concentration, CuGO exhibits superior adsorption performance to NH3. It is worth noting that in graphene oxide doped with Ag or Cu, the adsorption mechanism of carboxyl and epoxy groups transforms from physical adsorption into chemical adsorption, while the hydroxyl groups maintain consistent chemical adsorption properties before and after doping. This indicates that doping with Ag or Cu atoms can significantly enhance the adsorption capability of graphene oxide to NH3.
  • 图 1  优化前相关建模图 (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3; (e) AgGO-O-NH3; (f) AgGO-OH-NH3; (g) AgGO-COOH-NH3; (h) CuGO-O-NH3; (i) CuGO-OH-NH3; (j) CuGO-COOH-NH3

    Figure 1.  Related model diagrams before optimization: (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3; (e) AgGO-O-NH3; (f) AgGO-OH-NH3; (g) AgGO-COOH-NH3; (h) CuGO-O-NH3; (i) CuGO-OH-NH3; (j) CuGO-COOH-NH3.

    图 2  优化后G和含有不同含氧基团的GO吸附NH3的俯视图和侧视图 (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Figure 2.  Top and side views of optimized G and GO with different oxygen-containing groups adsorbing NH3: (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 3  G和含有不同含氧基团的GO吸附NH3的电荷总密度图(等值面为0.2) (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Figure 3.  Total charge density of G and GO with different oxygen-containing groups adsorbing NH3 (The isosurface value is 0.2): (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 4  G和含有不同含氧基团的GO吸附NH3的差分电荷密度图(等值面为0.05) (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Figure 4.  Charge density difference of G and GO with different oxygen-containing groups adsorbing NH3 (The isosurface value is 0.05): (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 5  G和GO的能带结构 (a) G; (b) GO-O; (c) GO-OH; (d) GO-COOH

    Figure 5.  Band structures of G and GO: (a) G; (b) GO-O; (c) GO-OH; (d) GO-COOH.

    图 6  G和GO吸附NH3的态密度图 (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Figure 6.  Density of states of G and GO adsorbing NH3: (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 7  优化后含不同含氧基团的AgGO和GO吸附NH3的俯视图 (a) GO-O-NH3; (b) GO-OH-NH3; (c) GO-COOH-NH3; (d) AgGO-O-NH3; (e) AgGO-OH-NH3; (f) AgGO-COOH-NH3

    Figure 7.  Top views of optimized AgGO and GO with different oxygen-containing groups adsorbing NH3: (a) GO-O-NH3; (b) GO-OH-NH3; (c) GO-COOH-NH3; (d) AgGO-O-NH3; (e) AgGO-OH-NH3; (f) AgGO-COOH-NH3.

    图 8  GO与AgGO的DOS和PDOS (a) GO-O-NH3和AgGO-O-NH3的DOS; (b) GO-OH-NH3和AgGO-OH-NH3的DOS; (c) GO-COOH-NH3和AgGO-COOH-NH3的DOS; (d) AgGO-O-NH3中Ag的DOS和PDOS; (e) AgGO-OH-NH3中Ag的DOS和PDOS; (f) AgGO-COOH-NH3中Ag的DOS和PDOS; (g) AgGO-O-NH3中N的DOS和PDOS; (h) AgGO-OH-NH3中N的DOS和PDOS; (i) AgGO-COOH-NH3中N的DOS和PDOS

    Figure 8.  DOS and PDOS of GO and AgGO: (a) DOS of GO-O-NH3 and AgGO-O-NH3; (b) DOS of GO-OH-NH3 and AgGO-OH-NH3; (c) DOS of GO-COOH-NH3 and AgGO-COOH-NH3; (d) DOS and PDOS of Ag in AgGO-O-NH3; (e) DOS and PDOS of Ag in AgGO-OH-NH3; (f) DOS and PDOS of Ag in AgGO-COOH-NH3; (g) DOS and PDOS of N in AgGO-O-NH3; (h) DOS and PDOS of N in AgGO-OH-NH3; (i) DOS and PDOS of N in AgGO-COOH-NH3.

    图 9  含有不同含氧基团的AgGO和CuGO吸附NH3的电荷总密度图(等值面为0.2) (a) AgGO-O-NH3; (b)AgGO-OH-NH3; (c) AgGO-COOH-NH3; (d) CuGO-O-NH3; (e) CuGO-OH-NH3; (f) CuGO-COOH-NH3.

    Figure 9.  Total charge density of AgGO and GO with different oxygen-containing groups adsorbing NH3 (The isosurface value is 0.2): (a) AgGO-O-NH3; (b) AgGO-OH-NH3; (c) AgGO-COOH-NH3; (d) CuGO-O-NH3; (e) CuGO-OH-NH3; (f) CuGO-COOH-NH3.

    图 10  AgGO和CuGO的能带结构 (a) AgGO-O; (b) AgGO-OH; (c) AgGO-COOH; (d) CuGO-O; (e) CuGO-OH; (f) CuGO-COOH

    Figure 10.  Band structures of AgGO and CuGO: (a) AgGO-O; (b) AgGO-OH; (c) AgGO-COOH; (d) CuGO-O; (e) CuGO-OH; (f) CuGO-COOH.

    图 11  AgGO与CuGO的DOS (a) AgGO-O-NH3中Ag和NH3的DOS; (b) AgGO-OH-NH3中Ag和NH3的DOS; (c) AgGO-COOH-NH3中Ag和NH3的DOS; (d) CuGO-O-NH3中Cu和NH3的DOS; (e) CuGO-OH-NH3中Cu和NH3的DOS; (f) CuGO-COOH-NH3中Cu和NH3的DOS

    Figure 11.  DOS of AgGO and CuGO: (a) DOS of Ag and NH3 in AgGO-O-NH3; (b) DOS of Ag and NH3 in AgGO-OH-NH3; (c) DOS of Ag and NH3 in AgGO-COOH-NH3; (d) DOS of Cu and NH3 in CuGO-O-NH3; (e) DOS of Cu and NH3 in CuGO-OH-NH3; (f) DOS of Cu and NH3 in CuGO-COOH-NH3.

    表 1  G和含有不同含氧基团的GO吸附NH3的几何参数. C1, C2和C3为与含氧基团相连的最近的三个碳原子; D表示吸附距离

    Table 1.  Structural parameters of G and GO with different oxygen-containing groups adsorbing NH3: C1, C2, and C3 are the three nearest carbon atoms connected to the oxygen-containing group; D represents the adsorption distance.

    Species Bond angles/(°) D
    C1-C2 C2-C3 C3-C1
    G-NH3 120.06 119.98 119.94 3.24 (N—C)
    GO-O-NH3 118.75 118.19 118.17 2.28 (H—O)
    GO-OH-NH3 112.95 112.72 112.77 1.80 (N—H)
    GO-COOH-NH3 119.57 2.44 (H—O)
    DownLoad: CSV

    表 2  G和含有不同含氧基团的GO吸附NH3的吸附能和电荷布居

    Table 2.  Adsorption energy and Mulliken charge of G and GO with different oxygen-containing groups adsorbing NH3.

    System Mulliken charge/e Eads /eV
    C1 C2 C3 NH3
    G-NH3 0.013 0.004 –0.039 0.022 –0.15
    GO-O-NH3 0.112 0.024 0.026 0.005 –0.11
    GO-OH-NH3 0.004 –0.035 0.006 0.078 –0.60
    GO-COOH-NH3 0.125 –0.016 0.036 –0.17
    DownLoad: CSV

    表 3  带有不同含氧基团的AgGO和GO吸附NH3的吸附距离D、电荷转移Q和吸附能Eads

    Table 3.  Adsorption distance D, charge transfer Q, and adsorption energy Eads of AgGO and GO with different oxygen-containing groups adsorbing NH3.

    Species D/Å Q/e Eads/eV
    NH3 Ag
    GO-O-NH3 2.28 (H-O) 0.005 –0.11
    AgGO-O-NH3 2.29 (N-Ag) 0.171 –0.038 –1.25
    GO-OH-NH3 1.80 (N-H) 0.078 –0.60
    AgGO-OH-NH3 2.29 (N-Ag) 0.160 –0.033 –1.26
    GO-COOH-NH3 2.44 (H-O) 0.036 –0.17
    AgGO-COOH-NH3 2.29 (N-Ag) 0.170 –0.082 –1.39
    DownLoad: CSV

    表 4  带有不同含氧基团AgGO和CuGO吸附NH3的电荷转移Q和吸附能Eads

    Table 4.  Charge transfer Q and adsorption energy Eads of AgGO and GO with different oxygen-containing groups adsorbing NH3.

    Species Q /e Eads/eV
    NH3 Ag/Cu
    AgGO-O-NH3 0.171 –0.038 –1.25
    CuGO-O-NH3 0.192 0.020 –1.39
    AgGO-OH-NH3 0.160 –0.033 –1.26
    CuGO-OH-NH3 0.180 –0.001 –1.43
    AgGO-COOH-NH3 0.170 –0.082 –1.39
    CuGO-COOH-NH3 0.192 0.034 –1.34
    DownLoad: CSV
    Baidu
  • [1]

    Yu Z, Wang B, Li Y, Kang D, Chen Z, Wu Y 2017 RSC Adv. 7 22599

    [2]

    Hibbard T, Killard A J 2011 Crit. Rev. Anal. Chem. 41 21Google Scholar

    [3]

    Risby T H, Solga S F 2006 Appl. Phys. B 85 421

    [4]

    Ishpal I, Kaur A 2013 J. Appl. Phys. 113 938

    [5]

    Wang J, Yang P, Wei X 2015 ACS Appl. Mater. Interfaces 7 3816Google Scholar

    [6]

    Li Y, Li H, Zhao F L 2024 Phys. Status Solidi RRL 18 2400015Google Scholar

    [7]

    Mirzaei M, Roohollahi H, Bagheri H 2024 Progresses in Ammonia: Science, Technology and Membranes(1st Ed. ) (Amsterdam: Elsevier) pp69–94

    [8]

    Kwak D, Lei Y, Maric R 2019 Talanta 204 713

    [9]

    Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R 2010 Adv. Mater. 22 3906Google Scholar

    [10]

    Wu J, Lin H, Moss D J 2023 Nat. Rev. Chem. 7 162

    [11]

    Bi J, Du Z, Sun J 2023 Adv. Mater. 35 2210734Google Scholar

    [12]

    Schedin F, Geim A K, Morozov S V 2007 Nat. Mater. 6 652Google Scholar

    [13]

    Peng Y, Li J 2013 Front. Environ. Sci. Eng. 7 403Google Scholar

    [14]

    Luo H, Zhang L, Xu S 2021 Appl. Surf. Sci. 537 147542

    [15]

    Park M S, Kim K H, Kim M J 2016 Colloid Surface A 490 104Google Scholar

    [16]

    Raza W, Krupanidhi S B 2018 ACS Appl. Mater. Interfaces 10 25285Google Scholar

    [17]

    Tran Q T, Hoa H T M, Yoo D H 2014 Sens. Actuators, B 194 45

    [18]

    Karaduman I, Er E, Çelikkan H 2017 J. Alloys Compd. 722 569

    [19]

    Zhang L, Tan Q, Kou H 2019 Sci. Rep. 9 9942Google Scholar

    [20]

    Saleh A M, Albiss B A 2024 ChemistrySelect 9 e202401500

    [21]

    Li Q, Liu Y, Chen D 2021 Chemosensors 9 227Google Scholar

    [22]

    Rawat S, Bamola P, Negi S 2023 ACS Appl. Nano Mater. 7 746

    [23]

    Sinnott S B 2013 J. Vac. Sci. Technol. , A 31 050812Google Scholar

    [24]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [25]

    Delley B 2000 J. Chem. Phys. 113 7756Google Scholar

    [26]

    Lerf A, He H, Forster M 1998 J. Phys. Chem. B 102 4477Google Scholar

    [27]

    Szabó T, Berkesi O, Forgó P 2006 Chem. Mater. 18 2740Google Scholar

    [28]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335Google Scholar

    [29]

    Guo B, Fang L, Zhang B 2011 Insciences J. 1 80

    [30]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [31]

    Wei D, Zhao C, Khan A 2019 Chem. Eng. J. 375 121964Google Scholar

    [32]

    Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403Google Scholar

    [33]

    王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺军, 贺龙辉 2019 68 187301Google Scholar

    Wang X, Huang S X, Luo H, Deng L W, Wu H, Xu Y C, He J, He L H 2019 Acta. Phys. Sin. 68 187301Google Scholar

    [34]

    Giovannetti G, Khomyakov P A, Brocks G 2008 Phys. Rev. Lett. 101 026803Google Scholar

  • [1] CHEN Fusong, DU Lingyan, TAN Xingyi, LI Qiang. First principles study of photoelectric properties of (S, Se) co-doped Si. Acta Physica Sinica, doi: 10.7498/aps.74.20241434
    [2] HU Junping, LIANG Sisi, DUAN Huixian, TIAN Juncheng, CHEN Shuo, DAI Boyang, HUANG Chunlai, LIU Yu, LYU Ying, WAN Lijia, OUYANG Chuying. Theoretical prediction of nitrogen-oxygen-anchored monatomic copper-doped graphene as an anode for alkaline ion batteries. Acta Physica Sinica, doi: 10.7498/aps.74.20241461
    [3] Zhu Hong-Qiang, Luo Lei, Wu Ze-Bang, Yin Kai-Hui, Yue Yuan-Xia, Yang Ying, Feng Qing, Jia Wei-Yao. Theoretical calculation study on enhancing the sensitivity and optical properties of graphene adsorption of nitrogen dioxide via doping. Acta Physica Sinica, doi: 10.7498/aps.73.20240992
    [4] Wu Hong-Fen, Feng Pan-Jun, Zhang Shuo, Liu Da-Peng, Gao Miao, Yan Xun-Wang. First-principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.71.20211631
    [5] Zhang Xiao-Ya, Song Jia-Xun, Wang Xin-Hao, Wang Jin-Bin, Zhong Xiang-Li. First principles calculation of optical absorption and polarization properties of In doped h-LuFeO3. Acta Physica Sinica, doi: 10.7498/aps.70.20201287
    [6] First principles study of Fe atom adsorbed biphenylene monolayer. Acta Physica Sinica, doi: 10.7498/aps.70.20211631
    [7] Lin Qi-Min, Zhang Xia, Lu Qi-Chao, Luo Yan-Bin, Cui Jian-Gong, Yan Xin, Ren Xiao-Min, Huang Xue. First-principles study on structural stability of graphene oxide and catalytic activity of nitric acid. Acta Physica Sinica, doi: 10.7498/aps.68.20191304
    [8] Jia Wan-Li, Zhou Miao, Wang Xin-Mei, Ji Wei-Li. First-principles study on the optical properties of Fe-doped GaN. Acta Physica Sinica, doi: 10.7498/aps.67.20172290
    [9] Sun Jian-Ping, Zhou Ke-Liang, Liang Xiao-Dong. Density functional study on the adsorption characteristics of O, O2, OH, and OOH of B-, P-doped, and B, P codoped graphenes. Acta Physica Sinica, doi: 10.7498/aps.65.018201
    [10] Cao Hai-Yan, Bi Heng-Chang, Xie Xiao, Su Shi, Sun Li-Tao. Functional tissues based on graphene oxide: facile preparation and dye adsorption properties. Acta Physica Sinica, doi: 10.7498/aps.65.146802
    [11] Lin Wen-Qiang, Xu Bin, Chen Liang, Zhou Feng, Chen Jun-Lang. Molecular dynamics simulations of the adsorption of bisphenol A on graphene oxide. Acta Physica Sinica, doi: 10.7498/aps.65.133102
    [12] Jia Ming-Zhen, Wang Hong-Yan, Chen Yuan-Zheng, Ma Cun-Liang, Wang Hui. First-principles study of electronic structures and electrochemical properties for Al, Fe and Mg doped Li2MnSiO4. Acta Physica Sinica, doi: 10.7498/aps.64.087101
    [13] Xu Jing, Liang Jia-Qing, Li Hong-Ping, Li Chang-Sheng, Liu Xiao-Juan, Meng Jian. First-principles study on the electronic structure of Ti-doped NbSe2. Acta Physica Sinica, doi: 10.7498/aps.64.207101
    [14] Huang Yan-Ping, Yuan Jian-Mei, Guo Gang, Mao Yu-Liang. First-principles study on saturated adsorption of alkali metal atoms on silicene. Acta Physica Sinica, doi: 10.7498/aps.64.013101
    [15] Liao Jian, Xie Zhao-Qi, Yuan Jian-Mei, Huang Yan-Ping, Mao Yu-Liang. First-principles study of 3d transition metal Co doped core-shell silicon nanowires. Acta Physica Sinica, doi: 10.7498/aps.63.163101
    [16] Cao Juan, Cui Lei, Pan Jing. Magnetism of V, Cr and Mn doped MoS2 by first-principal study. Acta Physica Sinica, doi: 10.7498/aps.62.187102
    [17] Wu Mu-Sheng, Xu Bo, Liu Gang, Ouyang Chu-Ying. First-principles study on the electronic structures of Cr- and W-doped single-layer MoS2. Acta Physica Sinica, doi: 10.7498/aps.62.037103
    [18] Li Hong-Lin, Zhang Zhong, Lü Ying-Bo, Huang Jin-Zhao, Zhang Ying, Liu Ru-Xi. First principles study on the electronic and optical properties of ZnO doped with rare earth. Acta Physica Sinica, doi: 10.7498/aps.62.047101
    [19] Sun Jian-Ping, Miao Ying-Meng, Cao Xiang-Chun. Density functional theory studies of O2 and CO adsorption on the graphene doped with Pd. Acta Physica Sinica, doi: 10.7498/aps.62.036301
    [20] Wei Yan-Wei, Yang Zong-Xian. The adsorption of Au on Zr-doped CeO2(110) surface: A first-principle study. Acta Physica Sinica, doi: 10.7498/aps.57.7139
Metrics
  • Abstract views:  381
  • PDF Downloads:  10
  • Cited By: 0
Publishing process
  • Received Date:  17 December 2024
  • Accepted Date:  11 January 2025
  • Available Online:  09 February 2025

/

返回文章
返回
Baidu
map