搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ag, Cu掺杂氧化石墨烯吸附NH3的第一性原理研究

万煜炜 王瑞 周文权 王一平 蔡亚楠 王常

引用本文:
Citation:

Ag, Cu掺杂氧化石墨烯吸附NH3的第一性原理研究

万煜炜, 王瑞, 周文权, 王一平, 蔡亚楠, 王常

First-principles study of NH3 adsorption on Ag- and Cu doped graphene oxide

WAN Yuwei, WANG Rui, ZHOU Wenquan, WANG Yiping, CAI Yanan, WANG Chang
Article Text (iFLYTEK Translation)
PDF
HTML
导出引用
  • 基于第一性原理的密度泛函理论, 系统地研究了氧化石墨烯及其Ag与Cu掺杂对NH3分子的吸附特性. 通过计算电荷分布、态密度、能带结构和吸附能, 研究了含氧基团及金属掺杂对氧化石墨烯气敏性能的调控效应. 通过对掺杂Ag原子的氧化石墨烯的态密度进行分析, 发现Ag原子与NH3中的N原子的s, p和d轨道之间存在共振, 表明Ag原子和N原子之间形成了化学键. 这种化学键导致Ag对NH3的吸附作用明显强于含氧基团, 从而使得掺杂后的氧化石墨烯的吸附能提升了数倍. 此外, Cu掺杂氧化石墨烯同样能够显著地提升其对NH3的吸附性能. 在掺杂浓度均为3.13%的条件下, Cu掺杂的氧化石墨烯对NH3表现出更强的吸附能力. 同时, Ag或Cu掺杂的氧化石墨烯中, 羧基和环氧基对NH3的吸附模式由物理吸附转变为化学吸附; 而羟基则在掺杂前后始终显示出化学吸附特性. 综上所述, 金属掺杂的氧化石墨烯的吸附能会受到含氧基团和金属原子共同作用影响, 且Ag或Cu原子掺杂能显著提高氧化石墨烯对NH3的吸附性能.
    Graphene has attracted great attention due to its large specific surface area, high charge carrier mobility, and excellent electrical conductivity. However, the inherent structural integrity and zero bandgap characteristics of graphene limit its gas sensing properties. Consequently, researchers have embarked on exploring avenues such as doping graphene or using graphene oxide as a gas-sensitive material to design gas sensors that respond optimally to ammonia. This work, based on first-principle density functional theory, focuses on the field of ammonia gas sensors, investigating in detail the adsorption characteristics of ammonia molecules on graphene oxide (GO) and graphene oxide doped with Ag and Cu (AgGO, CuGO). By calculating parameters including charge distribution, density of states, band structures, and adsorption energy, this work delves into the influences of diverse oxygen-containing groups and metal doping on the gas sensing properties of graphene oxide. The research results show that there is a substantial charge density overlap between the density of states of hydroxyl groups in graphene oxide and NH3 molecules, indicating a clear tendency towards chemical adsorption. It is particularly noteworthy that after NH3 adsorption, the graphene oxide containing hydroxyl shows the highest charge transfer (0.078e) and adsorption energy (0.60 eV), which indicates that the adsorption efficacy of NH3 is higher, followed by carboxyl groups and epoxy groups, which mainly participate in physical adsorption. Furthermore, this work delves into the influence of metal doping on graphene oxide, demonstrating that the adsorption capability of doped graphene oxide hinges upon the synergistic influence of oxygen-containing groups and metal atoms, with Ag-doped graphene oxide showing a several-fold increase in adsorption energy. Through the analysis of density of states, it is found that Ag atoms resonate with s, p, and d orbitals of the N atom in NH3, proving the formation of a chemical bond between Ag atom and N atom. Moreover, a comparative analysis shows that Cu-doped graphene oxide (CuGO) has an increased charge transfer of about 0.020e and slightly higher adsorption energy than Ag-doped graphene oxide (AgGO) when adsorbing NH3. Intriguingly, under the same doping concentration, CuGO exhibits superior adsorption performance to NH3. It is worth noting that in graphene oxide doped with Ag or Cu, the adsorption mechanism of carboxyl and epoxy groups transforms from physical adsorption into chemical adsorption, while the hydroxyl groups maintain consistent chemical adsorption properties before and after doping. This indicates that doping with Ag or Cu atoms can significantly enhance the adsorption capability of graphene oxide to NH3.
  • 图 1  优化前相关建模图 (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3; (e) AgGO-O-NH3; (f) AgGO-OH-NH3; (g) AgGO-COOH-NH3; (h) CuGO-O-NH3; (i) CuGO-OH-NH3; (j) CuGO-COOH-NH3

    Fig. 1.  Related model diagrams before optimization: (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3; (e) AgGO-O-NH3; (f) AgGO-OH-NH3; (g) AgGO-COOH-NH3; (h) CuGO-O-NH3; (i) CuGO-OH-NH3; (j) CuGO-COOH-NH3.

    图 2  优化后G和含有不同含氧基团的GO吸附NH3的俯视图和侧视图 (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Fig. 2.  Top and side views of optimized G and GO with different oxygen-containing groups adsorbing NH3: (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 3  G和含有不同含氧基团的GO吸附NH3的电荷总密度图(等值面为0.2) (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Fig. 3.  Total charge density of G and GO with different oxygen-containing groups adsorbing NH3 (The isosurface value is 0.2): (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 4  G和含有不同含氧基团的GO吸附NH3的差分电荷密度图(等值面为0.05) (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Fig. 4.  Charge density difference of G and GO with different oxygen-containing groups adsorbing NH3 (The isosurface value is 0.05): (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 5  G和GO的能带结构 (a) G; (b) GO-O; (c) GO-OH; (d) GO-COOH

    Fig. 5.  Band structures of G and GO: (a) G; (b) GO-O; (c) GO-OH; (d) GO-COOH.

    图 6  G和GO吸附NH3的态密度图 (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3

    Fig. 6.  Density of states of G and GO adsorbing NH3: (a) G-NH3; (b) GO-O-NH3; (c) GO-OH-NH3; (d) GO-COOH-NH3.

    图 7  优化后含不同含氧基团的AgGO和GO吸附NH3的俯视图 (a) GO-O-NH3; (b) GO-OH-NH3; (c) GO-COOH-NH3; (d) AgGO-O-NH3; (e) AgGO-OH-NH3; (f) AgGO-COOH-NH3

    Fig. 7.  Top views of optimized AgGO and GO with different oxygen-containing groups adsorbing NH3: (a) GO-O-NH3; (b) GO-OH-NH3; (c) GO-COOH-NH3; (d) AgGO-O-NH3; (e) AgGO-OH-NH3; (f) AgGO-COOH-NH3.

    图 8  GO与AgGO的DOS和PDOS (a) GO-O-NH3和AgGO-O-NH3的DOS; (b) GO-OH-NH3和AgGO-OH-NH3的DOS; (c) GO-COOH-NH3和AgGO-COOH-NH3的DOS; (d) AgGO-O-NH3中Ag的DOS和PDOS; (e) AgGO-OH-NH3中Ag的DOS和PDOS; (f) AgGO-COOH-NH3中Ag的DOS和PDOS; (g) AgGO-O-NH3中N的DOS和PDOS; (h) AgGO-OH-NH3中N的DOS和PDOS; (i) AgGO-COOH-NH3中N的DOS和PDOS

    Fig. 8.  DOS and PDOS of GO and AgGO: (a) DOS of GO-O-NH3 and AgGO-O-NH3; (b) DOS of GO-OH-NH3 and AgGO-OH-NH3; (c) DOS of GO-COOH-NH3 and AgGO-COOH-NH3; (d) DOS and PDOS of Ag in AgGO-O-NH3; (e) DOS and PDOS of Ag in AgGO-OH-NH3; (f) DOS and PDOS of Ag in AgGO-COOH-NH3; (g) DOS and PDOS of N in AgGO-O-NH3; (h) DOS and PDOS of N in AgGO-OH-NH3; (i) DOS and PDOS of N in AgGO-COOH-NH3.

    图 9  含有不同含氧基团的AgGO和CuGO吸附NH3的电荷总密度图(等值面为0.2) (a) AgGO-O-NH3; (b)AgGO-OH-NH3; (c) AgGO-COOH-NH3; (d) CuGO-O-NH3; (e) CuGO-OH-NH3; (f) CuGO-COOH-NH3.

    Fig. 9.  Total charge density of AgGO and GO with different oxygen-containing groups adsorbing NH3 (The isosurface value is 0.2): (a) AgGO-O-NH3; (b) AgGO-OH-NH3; (c) AgGO-COOH-NH3; (d) CuGO-O-NH3; (e) CuGO-OH-NH3; (f) CuGO-COOH-NH3.

    图 10  AgGO和CuGO的能带结构 (a) AgGO-O; (b) AgGO-OH; (c) AgGO-COOH; (d) CuGO-O; (e) CuGO-OH; (f) CuGO-COOH

    Fig. 10.  Band structures of AgGO and CuGO: (a) AgGO-O; (b) AgGO-OH; (c) AgGO-COOH; (d) CuGO-O; (e) CuGO-OH; (f) CuGO-COOH.

    图 11  AgGO与CuGO的DOS (a) AgGO-O-NH3中Ag和NH3的DOS; (b) AgGO-OH-NH3中Ag和NH3的DOS; (c) AgGO-COOH-NH3中Ag和NH3的DOS; (d) CuGO-O-NH3中Cu和NH3的DOS; (e) CuGO-OH-NH3中Cu和NH3的DOS; (f) CuGO-COOH-NH3中Cu和NH3的DOS

    Fig. 11.  DOS of AgGO and CuGO: (a) DOS of Ag and NH3 in AgGO-O-NH3; (b) DOS of Ag and NH3 in AgGO-OH-NH3; (c) DOS of Ag and NH3 in AgGO-COOH-NH3; (d) DOS of Cu and NH3 in CuGO-O-NH3; (e) DOS of Cu and NH3 in CuGO-OH-NH3; (f) DOS of Cu and NH3 in CuGO-COOH-NH3.

    表 1  G和含有不同含氧基团的GO吸附NH3的几何参数. C1, C2和C3为与含氧基团相连的最近的三个碳原子; D表示吸附距离

    Table 1.  Structural parameters of G and GO with different oxygen-containing groups adsorbing NH3: C1, C2, and C3 are the three nearest carbon atoms connected to the oxygen-containing group; D represents the adsorption distance.

    Species Bond angles/(°) D
    C1-C2 C2-C3 C3-C1
    G-NH3 120.06 119.98 119.94 3.24 (N—C)
    GO-O-NH3 118.75 118.19 118.17 2.28 (H—O)
    GO-OH-NH3 112.95 112.72 112.77 1.80 (N—H)
    GO-COOH-NH3 119.57 2.44 (H—O)
    下载: 导出CSV

    表 2  G和含有不同含氧基团的GO吸附NH3的吸附能和电荷布居

    Table 2.  Adsorption energy and Mulliken charge of G and GO with different oxygen-containing groups adsorbing NH3.

    System Mulliken charge/e Eads /eV
    C1 C2 C3 NH3
    G-NH3 0.013 0.004 –0.039 0.022 –0.15
    GO-O-NH3 0.112 0.024 0.026 0.005 –0.11
    GO-OH-NH3 0.004 –0.035 0.006 0.078 –0.60
    GO-COOH-NH3 0.125 –0.016 0.036 –0.17
    下载: 导出CSV

    表 3  带有不同含氧基团的AgGO和GO吸附NH3的吸附距离D、电荷转移Q和吸附能Eads

    Table 3.  Adsorption distance D, charge transfer Q, and adsorption energy Eads of AgGO and GO with different oxygen-containing groups adsorbing NH3.

    Species D/Å Q/e Eads/eV
    NH3 Ag
    GO-O-NH3 2.28 (H-O) 0.005 –0.11
    AgGO-O-NH3 2.29 (N-Ag) 0.171 –0.038 –1.25
    GO-OH-NH3 1.80 (N-H) 0.078 –0.60
    AgGO-OH-NH3 2.29 (N-Ag) 0.160 –0.033 –1.26
    GO-COOH-NH3 2.44 (H-O) 0.036 –0.17
    AgGO-COOH-NH3 2.29 (N-Ag) 0.170 –0.082 –1.39
    下载: 导出CSV

    表 4  带有不同含氧基团AgGO和CuGO吸附NH3的电荷转移Q和吸附能Eads

    Table 4.  Charge transfer Q and adsorption energy Eads of AgGO and GO with different oxygen-containing groups adsorbing NH3.

    Species Q /e Eads/eV
    NH3 Ag/Cu
    AgGO-O-NH3 0.171 –0.038 –1.25
    CuGO-O-NH3 0.192 0.020 –1.39
    AgGO-OH-NH3 0.160 –0.033 –1.26
    CuGO-OH-NH3 0.180 –0.001 –1.43
    AgGO-COOH-NH3 0.170 –0.082 –1.39
    CuGO-COOH-NH3 0.192 0.034 –1.34
    下载: 导出CSV
    Baidu
  • [1]

    Yu Z, Wang B, Li Y, Kang D, Chen Z, Wu Y 2017 RSC Adv. 7 22599

    [2]

    Hibbard T, Killard A J 2011 Crit. Rev. Anal. Chem. 41 21Google Scholar

    [3]

    Risby T H, Solga S F 2006 Appl. Phys. B 85 421

    [4]

    Ishpal I, Kaur A 2013 J. Appl. Phys. 113 938

    [5]

    Wang J, Yang P, Wei X 2015 ACS Appl. Mater. Interfaces 7 3816Google Scholar

    [6]

    Li Y, Li H, Zhao F L 2024 Phys. Status Solidi RRL 18 2400015Google Scholar

    [7]

    Mirzaei M, Roohollahi H, Bagheri H 2024 Progresses in Ammonia: Science, Technology and Membranes(1st Ed. ) (Amsterdam: Elsevier) pp69–94

    [8]

    Kwak D, Lei Y, Maric R 2019 Talanta 204 713

    [9]

    Zhu Y, Murali S, Cai W, Li X, Suk J W, Potts J R 2010 Adv. Mater. 22 3906Google Scholar

    [10]

    Wu J, Lin H, Moss D J 2023 Nat. Rev. Chem. 7 162

    [11]

    Bi J, Du Z, Sun J 2023 Adv. Mater. 35 2210734Google Scholar

    [12]

    Schedin F, Geim A K, Morozov S V 2007 Nat. Mater. 6 652Google Scholar

    [13]

    Peng Y, Li J 2013 Front. Environ. Sci. Eng. 7 403Google Scholar

    [14]

    Luo H, Zhang L, Xu S 2021 Appl. Surf. Sci. 537 147542

    [15]

    Park M S, Kim K H, Kim M J 2016 Colloid Surface A 490 104Google Scholar

    [16]

    Raza W, Krupanidhi S B 2018 ACS Appl. Mater. Interfaces 10 25285Google Scholar

    [17]

    Tran Q T, Hoa H T M, Yoo D H 2014 Sens. Actuators, B 194 45

    [18]

    Karaduman I, Er E, Çelikkan H 2017 J. Alloys Compd. 722 569

    [19]

    Zhang L, Tan Q, Kou H 2019 Sci. Rep. 9 9942Google Scholar

    [20]

    Saleh A M, Albiss B A 2024 ChemistrySelect 9 e202401500

    [21]

    Li Q, Liu Y, Chen D 2021 Chemosensors 9 227Google Scholar

    [22]

    Rawat S, Bamola P, Negi S 2023 ACS Appl. Nano Mater. 7 746

    [23]

    Sinnott S B 2013 J. Vac. Sci. Technol. , A 31 050812Google Scholar

    [24]

    Delley B 1990 J. Chem. Phys. 92 508Google Scholar

    [25]

    Delley B 2000 J. Chem. Phys. 113 7756Google Scholar

    [26]

    Lerf A, He H, Forster M 1998 J. Phys. Chem. B 102 4477Google Scholar

    [27]

    Szabó T, Berkesi O, Forgó P 2006 Chem. Mater. 18 2740Google Scholar

    [28]

    Liu H, Liu Y, Zhu D 2011 J. Mater. Chem. 21 3335Google Scholar

    [29]

    Guo B, Fang L, Zhang B 2011 Insciences J. 1 80

    [30]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [31]

    Wei D, Zhao C, Khan A 2019 Chem. Eng. J. 375 121964Google Scholar

    [32]

    Yan J A, Chou M Y 2010 Phys. Rev. B 82 125403Google Scholar

    [33]

    王晓, 黄生祥, 罗衡, 邓联文, 吴昊, 徐运超, 贺军, 贺龙辉 2019 68 187301Google Scholar

    Wang X, Huang S X, Luo H, Deng L W, Wu H, Xu Y C, He J, He L H 2019 Acta. Phys. Sin. 68 187301Google Scholar

    [34]

    Giovannetti G, Khomyakov P A, Brocks G 2008 Phys. Rev. Lett. 101 026803Google Scholar

  • [1] 陈福松, 杜玲艳, 谭兴毅, 李强. S, Se共掺杂Si光电特性的第一性原理计算分析.  , doi: 10.7498/aps.74.20241434
    [2] 胡军平, 梁丝思, 段惠贤, 田俊程, 陈硕, 戴柏杨, 黄春来, 刘宇, 吕营, 万利佳, 欧阳楚英. 氮氧锚定的单原子铜掺杂石墨烯作为碱离子电池负极的理论预测研究.  , doi: 10.7498/aps.74.20241461
    [3] 朱洪强, 罗磊, 吴泽邦, 尹开慧, 岳远霞, 杨英, 冯庆, 贾伟尧. 利用掺杂提高石墨烯吸附二氧化氮的敏感性及光学性质的理论计算.  , doi: 10.7498/aps.73.20240992
    [4] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理.  , doi: 10.7498/aps.71.20211631
    [5] 张小娅, 宋佳讯, 王鑫豪, 王金斌, 钟向丽. In掺杂h-LuFeO3光吸收及极化性能的第一性原理计算.  , doi: 10.7498/aps.70.20201287
    [6] 吴洪芬, 冯盼君, 张烁, 刘大鹏, 高淼, 闫循旺. 铁原子吸附联苯烯单层电子结构的第一性原理研究.  , doi: 10.7498/aps.70.20211631
    [7] 林启民, 张霞, 芦启超, 罗彦彬, 崔建功, 颜鑫, 任晓敏, 黄雪. 氧化石墨烯的结构稳定性及硝酸催化作用的第一性原理研究.  , doi: 10.7498/aps.68.20191304
    [8] 贾婉丽, 周淼, 王馨梅, 纪卫莉. Fe掺杂GaN光电特性的第一性原理研究.  , doi: 10.7498/aps.67.20172290
    [9] 孙建平, 周科良, 梁晓东. B,P单掺杂和共掺杂石墨烯对O,O2,OH和OOH吸附特性的密度泛函研究.  , doi: 10.7498/aps.65.018201
    [10] 林文强, 徐斌, 陈亮, 周峰, 陈均朗. 双酚A在氧化石墨烯表面吸附的分子动力学模拟.  , doi: 10.7498/aps.65.133102
    [11] 曹海燕, 毕恒昌, 谢骁, 苏适, 孙立涛. 氧化石墨烯基功能纸的简易制备和染料吸附性能.  , doi: 10.7498/aps.65.146802
    [12] 嘉明珍, 王红艳, 陈元正, 马存良, 王辉. Al, Fe, Mg掺杂Li2MnSiO4的电子结构和电化学性能的第一性原理研究.  , doi: 10.7498/aps.64.087101
    [13] 徐晶, 梁家青, 李红萍, 李长生, 刘孝娟, 孟健. Ti掺杂NbSe2电子结构的第一性原理研究.  , doi: 10.7498/aps.64.207101
    [14] 黄艳平, 袁健美, 郭刚, 毛宇亮. 硅烯饱和吸附碱金属原子的第一性原理研究.  , doi: 10.7498/aps.64.013101
    [15] 廖建, 谢召起, 袁健美, 黄艳平, 毛宇亮. 3d过渡金属Co掺杂核壳结构硅纳米线的第一性原理研究.  , doi: 10.7498/aps.63.163101
    [16] 曹娟, 崔磊, 潘靖. V,Cr,Mn掺杂MoS2磁性的第一性原理研究.  , doi: 10.7498/aps.62.187102
    [17] 吴木生, 徐波, 刘刚, 欧阳楚英. Cr和W掺杂的单层MoS2电子结构的第一性原理研究.  , doi: 10.7498/aps.62.037103
    [18] 李泓霖, 张仲, 吕英波, 黄金昭, 张英, 刘如喜. 第一性原理研究稀土掺杂ZnO结构的光电性质.  , doi: 10.7498/aps.62.047101
    [19] 孙建平, 缪应蒙, 曹相春. 基于密度泛函理论研究掺杂Pd石墨烯吸附O2及CO.  , doi: 10.7498/aps.62.036301
    [20] 魏彦薇, 杨宗献. Au在Zr掺杂的CeO2(110)面吸附的第一性原理研究.  , doi: 10.7498/aps.57.7139
计量
  • 文章访问数:  360
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-12-17
  • 修回日期:  2025-01-11
  • 上网日期:  2025-02-09

/

返回文章
返回
Baidu
map