Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Sensing and slow light applications of graphene plasmonic terahertz structure

Yang Xiao-Jie Xu Hui Xu Hai-Ye Li Ming Yu Hong-Fei Cheng Yu-Xuan Hou Hai-Liang Chen Zhi-Quan

Citation:

Sensing and slow light applications of graphene plasmonic terahertz structure

Yang Xiao-Jie, Xu Hui, Xu Hai-Ye, Li Ming, Yu Hong-Fei, Cheng Yu-Xuan, Hou Hai-Liang, Chen Zhi-Quan
PDF
HTML
Get Citation
  • In this work, Ansys FDTD is used to design and simulate a terahertz metamaterial structure based on periodic continuous pattern graphene monolayer, and the high-quality PIT phenomena are obtained by continuously adjusting structural parameters. To validate the designed structure, the simulated transmission curve (reflection curve) obtained is compared with the theoretical transmission curve (reflection curve) derived from coupled-mode theory. It is observed that these two results exhibit a remarkably high degree of overlap. The resonant frequency and Fermi energy reveals a perfect linear correlation between them with the resonant frequency increasing proportionally with Fermi energy increasing. Dynamic tuning of PIT can be realized by adjusting the Fermi energy of graphene. For a more in-depth study of its sensing characteristics, the structure is placed in different environments. As the refractive index of the detection medium increases, the resonant frequency gradually decreases, demonstrating a redshift phenomenon. By manipulating the resonant frequency of the PIT sensor, the selective detection of specific target can berealized. After analyzing the sensitivity and FOM values of the structure, it is found that the maximum sensitivity is 1.457 THz/RIU. At a resonant frequency of 6.8174 THz, FOM reaches 30.5652. In summary, the sensor structure designed in this work has dual frequency sensing characteristics and can be used for dual frequency detection. Moreover, compared with other sensor structures, it demonstrates superior sensing performance. Additionally, in studying the slow light effect of the structure, it is found that as the Fermi energy increases, the group index and phase shift at the transparency window continue to increase. At the Fermi energy of 1.2 eV, the group index reaches a high value of 584. This is because in the PIT phenomenon, transparent peaks are formed due to multimodal coupling. This coupling will significantly improve the dispersion characteristics near the transparent peak, resulting in a large group index near the transparent peak. Furthermore, with the increase of carrier mobility, the group index and phase shift of the structure also gradually increase. At a carrier mobility of 0.75 m²/(V·s), the group refractive index is 456, and reaches 1010 at 2.0 m²/(V·s). In this study, the slow-light performance of graphene structure can be optimized through jointly adjusting the Fermi energy and carrier mobility. This research provides theoretical support and methods for designing advanced graphene-based sensors and devices for slow-light applications.
      Corresponding author: Xu Hui, 1067980351@qq.com ; Chen Zhi-Quan, zqchen0106@qq.com
    • Funds: Project supported by the Key Project of Xiangjiang Laboratory, China (Grant No. 23XJ02001), the Natural Science Foundation of Hunan Province, China (Grant No. 2023JJ40218, 2022JJ30201), the Changsha Municipal Natural Science Foundation, China (Grant No. kq2202298), and the Scientific Research Foundation of Hunan Provincial Education Department, China (Grant No. 21B0574, 21B0556).
    [1]

    Gosciniak J, Rasras M, Khurgin J B 2020 Acs Photonics 7 488Google Scholar

    [2]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [3]

    Moon K, Park S 2019 Phys. Rev. Appl. 11 034074Google Scholar

    [4]

    Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424Google Scholar

    [5]

    Yao B C, Liu Y, Huang S W, Choi C, Xie Z D, Flor Flores J, Wu Y, Yu M B, Kwong D L, Huang Y, Rao Y J, Duan X F, Wong C W 2018 Nat. Photonics 12 22Google Scholar

    [6]

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Chen Z Q 2024 Phys. Scr. 99 055518Google Scholar

    [7]

    Wang Y X, Chang B S, Xue J J, Cao X L, Xu H, He H, Cui W, He Z H 2022 Diam. Relat. Mater. 123 108881Google Scholar

    [8]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [9]

    Sarker D, Nakti P P, Tahmid M I, Mamun M A Z, Zubair A 2021 Opt. Express 29 42713Google Scholar

    [10]

    Xu H, Li M, Chen Z Q, He L H, Dong Y, Li X L, Wang X J, Nie G Z, He Z H, Zeng B 2023 Phys. Scr. 98 045511Google Scholar

    [11]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [12]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs Photonics 5 1800Google Scholar

    [13]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [14]

    宋瀚法, 胡小永 2019 北京大学学报(自然科学版) 55 871Google Scholar

    Song H F, Hu X Y 2019 Acta Scientiarum Naturalium Universitatis Pekinensis 55 871Google Scholar

    [15]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 J. Lightwave Technol. 35 4553Google Scholar

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [17]

    He X Y, Liu F, Lin F T, Shi W Z 2021 Opt. Lett. 46 472Google Scholar

    [18]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [19]

    沈常宇, 隋文博, 周俊, 韩伟, 董洁, 方彬, 王兆坤 2023 激光与光电子学进展 60 1106004Google Scholar

    Sheng C N, Sui W B, Zhou J, Han W, Dong J, Fang B, Wang Z K 2023 Laser Optoelectron. Prog. 60 1106004Google Scholar

    [20]

    鲁志琪, 董锐敏, 刘昌宁 2023 中国激光 50 0113020Google Scholar

    Lu Z Q, Dong R M, Liu C N 2023 Chin. J. Lasers 50 0113020Google Scholar

    [21]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [22]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [23]

    许辉, 李铭, 杨肖杰, 徐海烨 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211Google Scholar

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China Phys. Mech. Astron. 54 234211Google Scholar

    [24]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [25]

    Zhao X Q, Huang R X, Du X, Zhang Z R, Li G Y 2024 Nano Lett. 24 1238Google Scholar

    [26]

    Yang H, He P, Ou K, Hu Y Q, Jiang Y T, Ou X N, Jia H H, Xie Z W, Yuan X C, Duan H G 2023 Light Sci. Appl. 12 79Google Scholar

    [27]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D Appl. Phys. 56 405102Google Scholar

    [28]

    Zhuo S S, Liu Z M, Zhou F Q, Qin Y P, Luo X, Ji C, Yang G X, Yang R H, Xie Y 2022 Opt. Express 30 47647Google Scholar

    [29]

    Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P H, Liu Z M, Cheng S B, Pan M 2021 Diam. Relat. Mater. 111 108227Google Scholar

    [30]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

    [31]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [32]

    Yang H, Jiang Y T, Hu Y Q, Ou K, Duan H G 2022 Laser Photonics Rev. 16 2200351Google Scholar

    [33]

    Zhang X, Liu Z M, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Yi Z 2020 Opt. Express 28 36771Google Scholar

    [34]

    Tang P R, Li J, Du L H, Liu Q, Peng Q X, Zhao J H, Zhu B, Li Z R, Zhu L G 2018 Opt. Express 26 30655Google Scholar

    [35]

    Xu H, Wang X J, Chen Z Q, Li X L, He L H, Dong Y L, Nie G Z, He Z H 2021 New J. Phys. 23 123025Google Scholar

    [36]

    Ren Y, Cui W, Yang Z M, Xiong B W, Zhang L, Li Z X, Lu S J, Huo Y S, Wu X X, Li G, Bai L, He Z H 2024 Opt. Mater. 149 115073Google Scholar

    [37]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2024 J. Phys. D Appl. Phys. 57 115101Google Scholar

    [38]

    Cui W, Wang Y X, Ma H Q, Xu H, Yi Z, Li L Q, Cao X L, Ren X C, He Z H 2021 Phys. Status Solidi 15 2100036Google Scholar

    [39]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H 2020 Opt. Express 28 25767Google Scholar

    [40]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [41]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [42]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Zhang X, Luo X, Zhou F Q 2019 Appl. Phys. Express 12 126001Google Scholar

    [43]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [44]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241Google Scholar

    [45]

    Li M, Xu H, Xu H Y, Yang X J, Dong Y L, He L H, Nie G Z, Wang X J, Chen Z Q 2024 Opt. Commun. 554 130175Google Scholar

    [46]

    Wang Y X, Cui W, Ma H Q, Xu H, Yi Z, Cao X L, Ren X C, He Z H 2021 Results Phys. 23 104002Google Scholar

    [47]

    Peng B, Ozdemir Ş K, Chen W J, Nori F, Yang L 2014 Nat. Commun. 5 5082Google Scholar

    [48]

    Li Z X, Yang N X, Liu Y T, Li L, Zhong Z Y, Song C, He Z H, Cui W, Xue W W, Li L Q, Li C J, Xu H, Chen Z Q, He H 2022 Diam. Relat. Mater. 126 109071Google Scholar

    [49]

    Jie X, Zhao T, Ran W Y, Feng Z H 2023 Phys. Chem. Chem. Phys. 524 128775Google Scholar

    [50]

    Askari M, Bahadoran M 2022 Optik 253 168589Google Scholar

    [51]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D Appl. Phys. 51 055103Google Scholar

    [52]

    Liu Y, Zhong R B, Lian Z, Bu C, Liu S G 2018 Sci. Rep. 8 2828Google Scholar

    [53]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048Google Scholar

    [54]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

  • 图 1  石墨烯结构图 (a)石墨烯结构侧视图; (b)周期单元俯视图, 其中a1 = 0.8 μm, a2 = 1.6 μm, h2 = 0.8 μm, h3 = 0.9 μm, h4 = 2.3 μm

    Figure 1.  Graphene structure diagram: (a) Side view of graphene structure; (b) unit structure top view, where a1 = 0.8 μm, a2 = 1.6 μm, h2 = 0.8 μm, h3 = 0.9 μm, h4 = 2.3 μm.

    图 2  耦合模理论模型.

    Figure 2.  Coupled mode theoretical model.

    图 3  石墨烯等离激元诱导透明效应 (a)石墨烯外加电压与费米能级的关系图; (b)石墨烯等离激元透射谱; (c)—(e) G1, G2和G3电场分布图, 频率是5.13 THz; (f) dip1电场分布图, 共振频率是2.81 THz; (g) dip2电场分布图, 共振频率是6.47 THz

    Figure 3.  Graphene plasmon induced transparency effect: (a) Relationship between the applied voltage and Fermi energy of graphene; (b) graphene plasmon transmission spectrum; (c)–(e) electric field distribution map of G1, G2 and G3, where the frequency is 5.13 THz; (f) electric field distribution map of dip1, where the resonant frequency is 2.81 THz; (g) electric field distribution map of dip2, where the resonant frequency is 6.47 THz.

    图 4  不同入射光方向下G1, G2, G3的光谱响应 (a)—(d) G1偏振角分别为0°, 30°, 60°, 90°的场图分布; (e)—(h) G2偏振角分别为0°, 30°, 60°, 90°的场图分布; (i)—(l)是G3偏振角分别为0°, 30°, 60°, 90°的场图分布

    Figure 4.  Spectral responses of G1, G2, and G3 under different incident light directions: (a)–(d) Field plot distribution of G1 polarization angles of 0°, 30°, 60°, 90°, respectively; (e)–(h) field plot distribution of G2 polarization angles of 0°, 30°, 60°, 90°, respectively; (i)–(l) field plot distribution of G2 polarization angles of 0°, 30°, 60°, 90°, respectively.

    图 5  石墨烯太赫兹结构的FDTD和CMT透射曲线和反射曲线 (a)透射率; (b)反射率

    Figure 5.  Comparison of transmission curve and reflection curve fitting between FDTD and CMT of graphene terahertz structure: (a) Transmission curve; (b) reflection curve.

    图 6  共振频率与费米能级关系图 (a)费米能级和共振频率的线性拟合图; (b)随费米能级连续变化的透射谱图

    Figure 6.  Relationship diagram between resonant frequency and Fermi energy: (a) Linear fitting graph of Fermi energy and resonance frequency; (b) transmission spectrum with continuous variation of Fermi energy.

    图 7  不同检测介质下结构的透射谱

    Figure 7.  Transmission spectra of structure under different detection media.

    图 8  石墨烯结构的FOM值 (a) n = 1.2; (b) n = 1.3; (c) n = 1.4; (d) n = 1.5; (e) n = 1.6; (f) n = 1.7

    Figure 8.  FOM of graphene structure: (a) n = 1.2; (b) n = 1.3; (c) n = 1.4; (d) n = 1.5; (e) n = 1.6; (f) n = 1.7.

    图 9  不同费米能级下石墨烯结构的群折射率与相移 (a) Ef = 0.9 eV; (b) Ef = 1.0 eV; (c) Ef = 1.1 eV; (d) Ef = 1.2 eV

    Figure 9.  Group index and phase shift of graphene structure under different Fermi energy: (a) Ef = 0.9 eV; (b) Ef = 1.0 eV; (c) Ef = 1.1 eV; (d) Ef = 1.2 eV.

    图 10  当载流子迁移率从0.75 m2/(V·s)增至2.0 m2/(V·s)时, 群折射率与相移的演变(Ef = 1.2 eV) (a) κ = 0.75 m2/(V·s); (b) κ = 1.0 m2/(V·s); (c) κ = 1.25 m2/(V·s); (d) κ = 1.5 m2/(V·s); (e) κ = 1.75 m2/(V·s); (f) κ = 2.0 m2/(V·s)

    Figure 10.  Evolution of group index and phase shift when carrier mobility increases from 0.75 m2/(V·s) to 2.0 m2/(V·s) when Ef = 1.2 eV: (a) κ = 0.75 m2/(V·s); (b) κ = 1.0 m2/(V·s); (c) κ = 1.25 m2/(V·s); (d) κ = 1.5 m2/(V·s); (e) κ = 1.75 m2/(V·s); (f) κ = 2.0 m2/(V·s).

    表 1  不同费米能级下的耦合强度与本征损耗

    Table 1.  Coupling strength and intrinsic loss at different Fermi energy.

    Ef/eV γ1/(1012 rad·s–1) γ2/(1012 rad·s–1) $\frac{\gamma_1- \gamma_2}{2}$/(1011 rad·s–1) μ/(1011 rad·s–1)
    0.8 2.0899 1.2955 3.972 2.6
    0.9 2.1826 1.2772 4.527 2.6
    1.0 2.2656 1.2670 4.993 2.6
    1.1 2.3394 1.26 5.397 2.6
    1.2 2.4304 1.2496 5.904 2.6
    DownLoad: CSV

    表 2  两个透射谷的频率差与灵敏度

    Table 2.  Frequency difference and sensitivity of two transmission dips.

    Δf1/THz Δf2/THz S1/(THz·RIU–1) S2/(THz·RIU–1)
    0.0689 0.1444 0.689 1.444
    0.0689 0.1456 0.689 1.456
    0.0663 0.1456 0.663 1.456
    0.0663 0.1457 0.663 1.457
    0.0677 0.1430 0.677 1.430
    0.0637 0.1404 0.637 1.404
    DownLoad: CSV

    表 3  与其他文献报道传感器的FOM比较

    Table 3.  Comparison of FOM with other sensors.

    Our workRef. [48]Ref. [49]Ref. [50]Ref. [2]
    FOM30.565221.926.1112423.61
    DownLoad: CSV
    Baidu
  • [1]

    Gosciniak J, Rasras M, Khurgin J B 2020 Acs Photonics 7 488Google Scholar

    [2]

    He Z H, Li L Q, Ma H Q, Pu L H, Xu H, Yi Z, Cao X L, Cui W 2021 Results Phys. 21 103795Google Scholar

    [3]

    Moon K, Park S 2019 Phys. Rev. Appl. 11 034074Google Scholar

    [4]

    Yang H, Ou K, Wan H Y, Hu Y Q, Wei Z Y, Jia H H, Cheng X B, Liu N, Duan H G 2023 Mater. Today 67 424Google Scholar

    [5]

    Yao B C, Liu Y, Huang S W, Choi C, Xie Z D, Flor Flores J, Wu Y, Yu M B, Kwong D L, Huang Y, Rao Y J, Duan X F, Wong C W 2018 Nat. Photonics 12 22Google Scholar

    [6]

    Yang X J, Xu H, Xu H Y, Li M, Yu H F, Cheng Y X, Chen Z Q 2024 Phys. Scr. 99 055518Google Scholar

    [7]

    Wang Y X, Chang B S, Xue J J, Cao X L, Xu H, He H, Cui W, He Z H 2022 Diam. Relat. Mater. 123 108881Google Scholar

    [8]

    Li M, Xu H, Yang X J, Xu H Y, Liu P C, He L H, Nie G Z, Dong Y L, Chen Z Q 2023 Results Phys. 52 106798Google Scholar

    [9]

    Sarker D, Nakti P P, Tahmid M I, Mamun M A Z, Zubair A 2021 Opt. Express 29 42713Google Scholar

    [10]

    Xu H, Li M, Chen Z Q, He L H, Dong Y, Li X L, Wang X J, Nie G Z, He Z H, Zeng B 2023 Phys. Scr. 98 045511Google Scholar

    [11]

    Yan H G, Low T, Zhu W J, Wu Y Q, Freitag M, Li X S, Guinea F, Avouris P, Xia F N 2013 Nat. Photonics 7 394Google Scholar

    [12]

    Kim T T, Kim H D, Zhao R K, Oh S S, Ha T, Chung D S, Lee Y H, Min B, Zhang S 2018 Acs Photonics 5 1800Google Scholar

    [13]

    Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T, Giessen H 2009 Nat. Mater. 8 758Google Scholar

    [14]

    宋瀚法, 胡小永 2019 北京大学学报(自然科学版) 55 871Google Scholar

    Song H F, Hu X Y 2019 Acta Scientiarum Naturalium Universitatis Pekinensis 55 871Google Scholar

    [15]

    Xia S X, Zhai X, Huang Y, Liu J Q, Wang L L, Wen S C 2017 J. Lightwave Technol. 35 4553Google Scholar

    [16]

    Zhang S, Genov D A, Wang Y, Liu M, Zhang X 2008 Phys. Rev. Lett. 101 047401Google Scholar

    [17]

    He X Y, Liu F, Lin F T, Shi W Z 2021 Opt. Lett. 46 472Google Scholar

    [18]

    He Z H, Li Z X, Li C J, Xue W W, Cui W 2020 Opt. Express 28 17595Google Scholar

    [19]

    沈常宇, 隋文博, 周俊, 韩伟, 董洁, 方彬, 王兆坤 2023 激光与光电子学进展 60 1106004Google Scholar

    Sheng C N, Sui W B, Zhou J, Han W, Dong J, Fang B, Wang Z K 2023 Laser Optoelectron. Prog. 60 1106004Google Scholar

    [20]

    鲁志琪, 董锐敏, 刘昌宁 2023 中国激光 50 0113020Google Scholar

    Lu Z Q, Dong R M, Liu C N 2023 Chin. J. Lasers 50 0113020Google Scholar

    [21]

    向星诚, 马海贝, 王磊, 田达, 张伟, 张彩虹, 吴敬波, 范克彬, 金飚兵, 陈健 吴培亨 2023 72 128701Google Scholar

    Xiang X C, Ma H B, Wang L, Tian D, Zhang W, Zhang C H, Wu J B, Fan K B, Jin B B, Chen J, Wu P H 2023 Acta Phys. Sin. 72 128701Google Scholar

    [22]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Luo X, Xiong C X, Liu C, Zhang B H, Zhou F Q 2019 Opt. Express 27 13884Google Scholar

    [23]

    许辉, 李铭, 杨肖杰, 徐海烨 陈智全 2024 中国科学: 物理学 力学 天文学 54 234211Google Scholar

    Xu H, Li M, Yang X J, Xu H Y, Chen Z Q 2024 Sci. China Phys. Mech. Astron. 54 234211Google Scholar

    [24]

    Safavi-Naeini A H, Alegre T P M, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69Google Scholar

    [25]

    Zhao X Q, Huang R X, Du X, Zhang Z R, Li G Y 2024 Nano Lett. 24 1238Google Scholar

    [26]

    Yang H, He P, Ou K, Hu Y Q, Jiang Y T, Ou X N, Jia H H, Xie Z W, Yuan X C, Duan H G 2023 Light Sci. Appl. 12 79Google Scholar

    [27]

    Ji C, Liu Z M, Zhou F Q, Luo X, Yang G X, Xie Y D, Yang R H 2023 J. Phys. D Appl. Phys. 56 405102Google Scholar

    [28]

    Zhuo S S, Liu Z M, Zhou F Q, Qin Y P, Luo X, Ji C, Yang G X, Yang R H, Xie Y 2022 Opt. Express 30 47647Google Scholar

    [29]

    Jiang L Y, Yuan C, Li Z Y, Su J, Yi Z, Yao W T, Wu P H, Liu Z M, Cheng S B, Pan M 2021 Diam. Relat. Mater. 111 108227Google Scholar

    [30]

    Gao E D, Jin R, Fu Z C, Cao G T, Deng Y, Chen J, Li G H, Chen X S, Li H J 2023 Photonics Res. 11 456Google Scholar

    [31]

    Xu H, Chen Z Q, He Z H, Nie G Z, Li D Q 2020 New J. Phys. 22 123009Google Scholar

    [32]

    Yang H, Jiang Y T, Hu Y Q, Ou K, Duan H G 2022 Laser Photonics Rev. 16 2200351Google Scholar

    [33]

    Zhang X, Liu Z M, Zhang Z B, Gao E D, Luo X, Zhou F Q, Li H J, Yi Z 2020 Opt. Express 28 36771Google Scholar

    [34]

    Tang P R, Li J, Du L H, Liu Q, Peng Q X, Zhao J H, Zhu B, Li Z R, Zhu L G 2018 Opt. Express 26 30655Google Scholar

    [35]

    Xu H, Wang X J, Chen Z Q, Li X L, He L H, Dong Y L, Nie G Z, He Z H 2021 New J. Phys. 23 123025Google Scholar

    [36]

    Ren Y, Cui W, Yang Z M, Xiong B W, Zhang L, Li Z X, Lu S J, Huo Y S, Wu X X, Li G, Bai L, He Z H 2024 Opt. Mater. 149 115073Google Scholar

    [37]

    Yang X J, Xu H, Xu H Y, Li M, He L H, Nie G Z, Chen Z Q 2024 J. Phys. D Appl. Phys. 57 115101Google Scholar

    [38]

    Cui W, Wang Y X, Ma H Q, Xu H, Yi Z, Li L Q, Cao X L, Ren X C, He Z H 2021 Phys. Status Solidi 15 2100036Google Scholar

    [39]

    Xu H, He Z H, Chen Z Q, Nie G Z, Li H 2020 Opt. Express 28 25767Google Scholar

    [40]

    Geim A K, Novoselov K S 2007 Nat. Mater. 6 183Google Scholar

    [41]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749Google Scholar

    [42]

    Gao E D, Liu Z M, Li H J, Xu H, Zhang Z B, Zhang X, Luo X, Zhou F Q 2019 Appl. Phys. Express 12 126001Google Scholar

    [43]

    Efetov D K, Kim P 2010 Phys. Rev. Lett. 105 256805Google Scholar

    [44]

    Balci S, Balci O, Kakenov N, Atar F B, Kocabas C 2016 Opt. Lett. 41 1241Google Scholar

    [45]

    Li M, Xu H, Xu H Y, Yang X J, Dong Y L, He L H, Nie G Z, Wang X J, Chen Z Q 2024 Opt. Commun. 554 130175Google Scholar

    [46]

    Wang Y X, Cui W, Ma H Q, Xu H, Yi Z, Cao X L, Ren X C, He Z H 2021 Results Phys. 23 104002Google Scholar

    [47]

    Peng B, Ozdemir Ş K, Chen W J, Nori F, Yang L 2014 Nat. Commun. 5 5082Google Scholar

    [48]

    Li Z X, Yang N X, Liu Y T, Li L, Zhong Z Y, Song C, He Z H, Cui W, Xue W W, Li L Q, Li C J, Xu H, Chen Z Q, He H 2022 Diam. Relat. Mater. 126 109071Google Scholar

    [49]

    Jie X, Zhao T, Ran W Y, Feng Z H 2023 Phys. Chem. Chem. Phys. 524 128775Google Scholar

    [50]

    Askari M, Bahadoran M 2022 Optik 253 168589Google Scholar

    [51]

    Zhang T, Zhou J Z, Dai J, Dai Y T, Han X, Li J Q, Yin F F, Zhou Y, Xu K 2018 J. Phys. D Appl. Phys. 51 055103Google Scholar

    [52]

    Liu Y, Zhong R B, Lian Z, Bu C, Liu S G 2018 Sci. Rep. 8 2828Google Scholar

    [53]

    Xiao B G, Tong S J, Fyffe A, Shi Z M 2020 Opt. Express 28 4048Google Scholar

    [54]

    Gao E D, Cao G T, Deng Y, Li H J, Chen X S, Li G H 2024 Opt. Laser Technol. 168 109840Google Scholar

  • [1] Zhang Yi-Fei, Liu Yuan, Mei Jia-Dong, Wang Jun-Zhuan, Wang Xiao-Mu, Shi Yi. Quaternary nanoparticle array antenna for graphene/silicon near-infrared detector. Acta Physica Sinica, 2024, 73(6): 064202. doi: 10.7498/aps.73.20231657
    [2] Hou Lei, Guan Shu-Yang, Yin Jun, Zhang Yu-Jun, Xiao Yi-Ming, Xu Wen, Ding Lan. High-order cavity coupled plasmon polaritons in resonant cavity-monolayer MoS2 system. Acta Physica Sinica, 2024, 73(22): 227102. doi: 10.7498/aps.73.20241106
    [3] Duan Yu, Dai Xiao-Kang, Wu Chen-Chen, Yang Xiao-Xia. Tunable acoustic graphene plasmon enhanced nano-infrared spectroscopy. Acta Physica Sinica, 2024, 73(13): 138101. doi: 10.7498/aps.73.20240489
    [4] Jin Jia-Sheng, Ma Cheng-Ju, Zhang Yao, Zhang Yue-Bin, Bao Shi-Qian, Li Mi, Li Dong-Ming, Liu Ming, Liu Qian-Zhen, Zhang Yi-Xin. Switchable multifunctional terahertz metamaterial with slow-light and absorption functions based on phase change materials. Acta Physica Sinica, 2023, 72(8): 084202. doi: 10.7498/aps.72.20222336
    [5] Wang Xin, Wang Jun-Lin. Refractive index sensing characteristics of electromagnetic metamaterial absorber in terahertz band. Acta Physica Sinica, 2021, 70(3): 038102. doi: 10.7498/aps.70.20201054
    [6] Wang Yue, Cui Zi-Jian, Zhang Xiao-Ju, Zhang Da-Chi, Zhang Xiang, Zhou Tao, Wang Xuan. Research progress of metamaterials powered advanced terahertz biochemical sensing detection techniques. Acta Physica Sinica, 2021, 70(24): 247802. doi: 10.7498/aps.70.20211752
    [7] Jiang Yue, Wang Shu-Ying, Wang Zhi-Ye, Zhou Hua, Ka Ma-Le, Zhao Song, Shen Xiang-Qian. Plasmon modes of fishnet metastructure and its trapping and control of light for thin film solar cells. Acta Physica Sinica, 2021, 70(21): 218801. doi: 10.7498/aps.70.20210693
    [8] Li Xue-Jian, Cao Min, Tang Min, Mi Yue-An, Tao Hong, Gu Hao, Ren Wen-Hua, Jian Wei, Ren Guo-Bin. Inter-mode stimulated Brillouin scattering and simultaneous temperature and strain sensing in M-shaped few-mode fiber. Acta Physica Sinica, 2020, 69(11): 114203. doi: 10.7498/aps.69.20200103
    [9] Zhao Cheng-Xiang, Qie Yuan, Yu Yao, Ma Rong-Rong, Qin Jun-Fei, Liu Yan. Enhanced optical absorption of graphene by plasmon. Acta Physica Sinica, 2020, 69(6): 067801. doi: 10.7498/aps.69.20191645
    [10] Wang Chong, Xing Qiao-Xia, Xie Yuan-Gang, Yan Hu-Gen. Spectroscopic studies of plasmons in topological materials. Acta Physica Sinica, 2019, 68(22): 227801. doi: 10.7498/aps.68.20191098
    [11] Xu Fei-Xiang, Li Xiao-Guang, Zhang Zhen-Yu. Some recent advances on quantum plasmonics. Acta Physica Sinica, 2019, 68(14): 147103. doi: 10.7498/aps.68.20190331
    [12] Wu Chen-Chen, Guo Xiang-Dong, Hu Hai, Yang Xiao-Xia, Dai Qing. Graphene plasmon enhanced infrared spectroscopy. Acta Physica Sinica, 2019, 68(14): 148103. doi: 10.7498/aps.68.20190903
    [13] Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang. Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics. Acta Physica Sinica, 2016, 65(19): 194205. doi: 10.7498/aps.65.194205
    [14] Zhang Chao-Jie, Zhou Ting, Du Xin-Peng, Wang Tong-Biao, Liu Nian-Hua. Enhancement of quantum friction via coupling of surface phonon polariton and graphene plasmons. Acta Physica Sinica, 2016, 65(23): 236801. doi: 10.7498/aps.65.236801
    [15] Zhang Yu-Ping, Li Tong-Tong, Lü Huan-Huan, Huang Xiao-Yan, Zhang Hui-Yun. Study on sensing characteristics of I-shaped terahertz metamaterial absorber. Acta Physica Sinica, 2015, 64(11): 117801. doi: 10.7498/aps.64.117801
    [16] Yin Hai-Feng, Zhang Hong, Yue Li. Plasmon excitation in C60 fullerene dimers. Acta Physica Sinica, 2014, 63(12): 127303. doi: 10.7498/aps.63.127303
    [17] Wei Wei, Zhang Xia, Yu Hui, Li Yu-Peng, Zhang Yang-An, Huang Yong-Qing, Chen Wei, Luo Wen-Yong, Ren Xiao-Min. Slow light based on stimulated Brillouin scattering in microstructured fiber. Acta Physica Sinica, 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [18] Zheng Di, Pan Wei. Feasibility study of nonlinear optical loop mirror in the cascaded stimwlated Brillouin scatteving-based slow light system. Acta Physica Sinica, 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [19] Wang Shi-He, Ren Li-Yong, Liu Yu. Theoretical study on stimulated-Brillouin-scattering gain-spectrum broadening and pulse-distortion reduction of slow-light propagation using double broadband pump in optical fibers. Acta Physica Sinica, 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [20] Lu Hui, Tian Hui-Ping, Li Chang-Hong, Ji Yue-Feng. Research on new type of slow light structure based on 2D photonic crystal coupled cavity waveguide. Acta Physica Sinica, 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
Metrics
  • Abstract views:  1568
  • PDF Downloads:  58
  • Cited By: 0
Publishing process
  • Received Date:  10 May 2024
  • Accepted Date:  09 June 2024
  • Available Online:  01 July 2024
  • Published Online:  05 August 2024

/

返回文章
返回
Baidu
map