-
Whispering gallery mode (WGM) cavities due to their high quality factors, small mode volumes, and simple fabrications, have potential applications in photonic devices and ultrasensitive mass sensing. Cavity optomechanic systems based on WGM cavities have progressed enormously in recent years due to the fact that they reveal and explore fundamental quantum physics and pave the way for potential applications of optomechanical devices. However, WGM based cavity optomechanics still lies in a single optical mode coupled to a single mechanical mode. Here in this paper, in order to reveal more quantum phenomena and realize remarkable applications, we present a typical multimode cavity optomechanical system composed of two WGM cavities, of which one WGM cavity is an optomechanical cavity driven by a pump laser and a probe laser and the other cavity is an ordinary WGM cavity only driven with a pump laser. The two WGM cavities are coupled with each other via exchanging energy, and the coupling strength depends on the distance between the two cavities. With the standard method of quantum optics and the quantum Langevin equations, the coherent optical spectra are derived. The coherent optical propagation properties and the phenomenon of optomechanically induced transparency based slow-light effect are demonstrated theoretically via manipulating the coupling strength of the two cavities. The results based on the two-WGM cavity optomechanical system are also compared with those based on the single cavity optomechanical system, and the results indicate that the cavity-cavity coupling plays a key role in the system, which indicates a quantum channel, and influences the width of the transparency window. We further theoretically propose a mass sensor based on the double WGM cavity optomechanical system. To implement mass sensing, the first step is to determine the original frequency of the resonator. With adjusting the detuning parameters and the cavity-cavity coupling strength, a straightforward method to measure the resonance frequency of the WGM optomechanical resonator is proposed. The resonance frequency of the mechanical resonator can be determined from the probe transmission spectrum, and the coupling strength between the two cavities will enhance both the line width and the intensity, which will be beneficial to implementing mass sensing. The mass of external nanoparticles deposited onto the WGM optomechanical cavity can be measured conveniently by tracking the mechanical resonance frequency shifts due to the fact that mass changes in the probe transmission spectrum. Compared with those of single-cavity optomechanical mass sensors, the mass sensitivity and resolution are improved significantly due to the cavity-cavity coupling. This double WGM cavity optomechanical system provides a new platform for exploring the on-chip applications in optical storage and ultrahigh resolution sensing devices.
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武2011 60 124206]
[3] Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014 63 204201]
[4] Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2015 64 164211]
[5] Balram K C, Davanco M, Song J D, Srinivasan K 2016 Nat. Photon. 10 346
[6] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697
[7] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89
[8] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359
[9] Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803
[10] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520
[11] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204
[12] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
[13] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601
[14] Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179
[15] Clark J B, Lecocq F, Simmonds R W, Aumentado J, Teufel J D 2016 Nat. Phys. doi:10.1038/nphys3701
[16] Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185
[17] Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952
[18] Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotech. 7 509
[19] Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P, Barclay P E 2014 Phys. Rev. X 4 021052
[20] Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768
[21] Li J J, Zhu K D 2013 Phys. Rep. 525 223
[22] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[23] Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpaa M A 2011 Nature 480 351
[24] Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002
[25] Basiri-Esfahani S, Akram U, Milburn G J 2012 New J. Phys. 14 085017
[26] He W, Li J J, Zhu K D 2010 Opt. Lett. 35 339
[27] Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806
[28] Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196
[29] Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818
[30] Barzanjeh S, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503
[31] Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkila T T, Sillanpaa M A 2012 Nat. Commun. 3 987
[32] Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603
[33] Guo Y, Li K, Nie W, Li Y 2014 Phys. Rev. A 90 053841
[34] Liu Y C, Xiao, Y F, Luan X S, Chee W W 2015 Sci. China: Physics, Mechanics & Astronomy 58 050305
[35] Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213
[36] Dong C, Fiore V, Kuzyk M C, Wang H 2012 Science 338 1609
[37] Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802
[38] Liu F, Alaie S, Leseman Z S, Hossein-Zadeh M 2013 Opt. Express 21 19555
[39] Shao L, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F, Gong Q 2013 Adv. Mater. 25 5616
[40] Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682
[41] Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012 Nat. Nanotechnol. 301 861
[42] Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603
[43] Li J J, Zhu K D 2011 Phys. Rev. B 83 245421
[44] Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394
[45] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524
[46] Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604
[47] Schliesser A, Arcizet O, Riviere R, Anetsberger G, Kippenberg T J 2009 Nat. Phys. 5 509
[48] Boyd R W 2010 Nonlinear Optics (3nd Ed.) (San Diego, California: Academic) p315
[49] Gardiner C W, Zoller P 2000 Quantum Noise (2nd Ed.) (Berlin: Springer) p 425
[50] Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D, Yang L 2010 Nat. Photon. 4 46
[51] Yi X, Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y, Gong Q 2011 Phys. Rev. A 83 023803
[52] Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682
[53] Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803
[54] Jiang C, Liu H, Cui Y, Li X, Chen G, Chen B 2013 Opt. Express 21 12165
[55] Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773
[56] Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027
-
[1] Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391
[2] Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武2011 60 124206]
[3] Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014 63 204201]
[4] Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2015 64 164211]
[5] Balram K C, Davanco M, Song J D, Srinivasan K 2016 Nat. Photon. 10 346
[6] O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697
[7] Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89
[8] Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359
[9] Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803
[10] Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520
[11] Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204
[12] Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69
[13] Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601
[14] Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179
[15] Clark J B, Lecocq F, Simmonds R W, Aumentado J, Teufel J D 2016 Nat. Phys. doi:10.1038/nphys3701
[16] Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185
[17] Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952
[18] Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotech. 7 509
[19] Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P, Barclay P E 2014 Phys. Rev. X 4 021052
[20] Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768
[21] Li J J, Zhu K D 2013 Phys. Rep. 525 223
[22] Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633
[23] Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpaa M A 2011 Nature 480 351
[24] Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002
[25] Basiri-Esfahani S, Akram U, Milburn G J 2012 New J. Phys. 14 085017
[26] He W, Li J J, Zhu K D 2010 Opt. Lett. 35 339
[27] Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806
[28] Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196
[29] Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818
[30] Barzanjeh S, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503
[31] Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkila T T, Sillanpaa M A 2012 Nat. Commun. 3 987
[32] Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603
[33] Guo Y, Li K, Nie W, Li Y 2014 Phys. Rev. A 90 053841
[34] Liu Y C, Xiao, Y F, Luan X S, Chee W W 2015 Sci. China: Physics, Mechanics & Astronomy 58 050305
[35] Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213
[36] Dong C, Fiore V, Kuzyk M C, Wang H 2012 Science 338 1609
[37] Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802
[38] Liu F, Alaie S, Leseman Z S, Hossein-Zadeh M 2013 Opt. Express 21 19555
[39] Shao L, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F, Gong Q 2013 Adv. Mater. 25 5616
[40] Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682
[41] Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012 Nat. Nanotechnol. 301 861
[42] Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603
[43] Li J J, Zhu K D 2011 Phys. Rev. B 83 245421
[44] Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394
[45] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524
[46] Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604
[47] Schliesser A, Arcizet O, Riviere R, Anetsberger G, Kippenberg T J 2009 Nat. Phys. 5 509
[48] Boyd R W 2010 Nonlinear Optics (3nd Ed.) (San Diego, California: Academic) p315
[49] Gardiner C W, Zoller P 2000 Quantum Noise (2nd Ed.) (Berlin: Springer) p 425
[50] Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D, Yang L 2010 Nat. Photon. 4 46
[51] Yi X, Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y, Gong Q 2011 Phys. Rev. A 83 023803
[52] Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682
[53] Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803
[54] Jiang C, Liu H, Cui Y, Li X, Chen G, Chen B 2013 Opt. Express 21 12165
[55] Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773
[56] Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027
Catalog
Metrics
- Abstract views: 6398
- PDF Downloads: 367
- Cited By: 0