搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感

陈华俊 方贤文 陈昌兆 李洋

引用本文:
Citation:

基于双回音壁模式腔光力学系统的光学传播特性和超高分辨率光学质量传感

陈华俊, 方贤文, 陈昌兆, 李洋

Coherent optical propagation properties and ultrahigh resolution mass sensing based on double whispering gallery modes cavity optomechanics

Chen Hua-Jun, Fang Xian-Wen, Chen Chang-Zhao, Li Yang
PDF
导出引用
  • 研究基于双回音壁模式腔光力学系统中的相干光学传播特性,通过控制该系统中两腔之间的耦合,证明了基于光力诱导透明的慢光效应.该系统中的腔-腔耦合起着关键作用,提供了一个量子通道并影响透明窗口的宽度.基于该系统理论上提出一种光学质量传感方案.通过检测探测吸收谱中由于额外质量引起的机械共振频移可直接测出沉积在回音壁腔表面上的额外纳米颗粒的质量.与单腔光力学质量传感相比,多模式光力学系统中腔-腔耦合显著提高了质量传感的分辨率.双回音壁模式光力学系统将在光学存储和超高分辨率质量传感器件上有着潜在应用.
    Whispering gallery mode (WGM) cavities due to their high quality factors, small mode volumes, and simple fabrications, have potential applications in photonic devices and ultrasensitive mass sensing. Cavity optomechanic systems based on WGM cavities have progressed enormously in recent years due to the fact that they reveal and explore fundamental quantum physics and pave the way for potential applications of optomechanical devices. However, WGM based cavity optomechanics still lies in a single optical mode coupled to a single mechanical mode. Here in this paper, in order to reveal more quantum phenomena and realize remarkable applications, we present a typical multimode cavity optomechanical system composed of two WGM cavities, of which one WGM cavity is an optomechanical cavity driven by a pump laser and a probe laser and the other cavity is an ordinary WGM cavity only driven with a pump laser. The two WGM cavities are coupled with each other via exchanging energy, and the coupling strength depends on the distance between the two cavities. With the standard method of quantum optics and the quantum Langevin equations, the coherent optical spectra are derived. The coherent optical propagation properties and the phenomenon of optomechanically induced transparency based slow-light effect are demonstrated theoretically via manipulating the coupling strength of the two cavities. The results based on the two-WGM cavity optomechanical system are also compared with those based on the single cavity optomechanical system, and the results indicate that the cavity-cavity coupling plays a key role in the system, which indicates a quantum channel, and influences the width of the transparency window. We further theoretically propose a mass sensor based on the double WGM cavity optomechanical system. To implement mass sensing, the first step is to determine the original frequency of the resonator. With adjusting the detuning parameters and the cavity-cavity coupling strength, a straightforward method to measure the resonance frequency of the WGM optomechanical resonator is proposed. The resonance frequency of the mechanical resonator can be determined from the probe transmission spectrum, and the coupling strength between the two cavities will enhance both the line width and the intensity, which will be beneficial to implementing mass sensing. The mass of external nanoparticles deposited onto the WGM optomechanical cavity can be measured conveniently by tracking the mechanical resonance frequency shifts due to the fact that mass changes in the probe transmission spectrum. Compared with those of single-cavity optomechanical mass sensors, the mass sensitivity and resolution are improved significantly due to the cavity-cavity coupling. This double WGM cavity optomechanical system provides a new platform for exploring the on-chip applications in optical storage and ultrahigh resolution sensing devices.
      通信作者: 陈华俊, chenphysics@126.com
    • 基金项目: 国家自然科学基金(批准号:11404005,51502005,61272153,61572035)资助的课题.
      Corresponding author: Chen Hua-Jun, chenphysics@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11404005, 51502005, 61272153, 61572035).
    [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [2]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武2011 60 124206]

    [3]

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014 63 204201]

    [4]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2015 64 164211]

    [5]

    Balram K C, Davanco M, Song J D, Srinivasan K 2016 Nat. Photon. 10 346

    [6]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [7]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [8]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359

    [9]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803

    [10]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [11]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204

    [12]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [13]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601

    [14]

    Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179

    [15]

    Clark J B, Lecocq F, Simmonds R W, Aumentado J, Teufel J D 2016 Nat. Phys. doi:10.1038/nphys3701

    [16]

    Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185

    [17]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952

    [18]

    Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotech. 7 509

    [19]

    Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P, Barclay P E 2014 Phys. Rev. X 4 021052

    [20]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [21]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223

    [22]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [23]

    Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpaa M A 2011 Nature 480 351

    [24]

    Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002

    [25]

    Basiri-Esfahani S, Akram U, Milburn G J 2012 New J. Phys. 14 085017

    [26]

    He W, Li J J, Zhu K D 2010 Opt. Lett. 35 339

    [27]

    Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806

    [28]

    Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196

    [29]

    Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818

    [30]

    Barzanjeh S, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503

    [31]

    Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkila T T, Sillanpaa M A 2012 Nat. Commun. 3 987

    [32]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [33]

    Guo Y, Li K, Nie W, Li Y 2014 Phys. Rev. A 90 053841

    [34]

    Liu Y C, Xiao, Y F, Luan X S, Chee W W 2015 Sci. China: Physics, Mechanics & Astronomy 58 050305

    [35]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [36]

    Dong C, Fiore V, Kuzyk M C, Wang H 2012 Science 338 1609

    [37]

    Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802

    [38]

    Liu F, Alaie S, Leseman Z S, Hossein-Zadeh M 2013 Opt. Express 21 19555

    [39]

    Shao L, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F, Gong Q 2013 Adv. Mater. 25 5616

    [40]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [41]

    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012 Nat. Nanotechnol. 301 861

    [42]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [43]

    Li J J, Zhu K D 2011 Phys. Rev. B 83 245421

    [44]

    Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [45]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524

    [46]

    Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [47]

    Schliesser A, Arcizet O, Riviere R, Anetsberger G, Kippenberg T J 2009 Nat. Phys. 5 509

    [48]

    Boyd R W 2010 Nonlinear Optics (3nd Ed.) (San Diego, California: Academic) p315

    [49]

    Gardiner C W, Zoller P 2000 Quantum Noise (2nd Ed.) (Berlin: Springer) p 425

    [50]

    Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D, Yang L 2010 Nat. Photon. 4 46

    [51]

    Yi X, Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y, Gong Q 2011 Phys. Rev. A 83 023803

    [52]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [53]

    Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803

    [54]

    Jiang C, Liu H, Cui Y, Li X, Chen G, Chen B 2013 Opt. Express 21 12165

    [55]

    Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773

    [56]

    Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027

  • [1]

    Aspelmeyer M, Kippenberg T J, Marquardt F 2014 Rev. Mod. Phys. 86 1391

    [2]

    Chen H J, Mi X W 2011 Acta Phys. Sin. 60 124206 (in Chinese) [陈华俊, 米贤武2011 60 124206]

    [3]

    Yan X B, Yang L, Tian X D, Liu Y M, Zhang Y 2014 Acta Phys. Sin. 63 204201 (in Chinese) [严晓波, 杨柳, 田雪冬, 刘一谋, 张岩2014 63 204201]

    [4]

    Chen X, Liu X W, Zhang K Y, Yuan C H, Zhang W P 2015 Acta Phys. Sin. 64 164211 (in Chinese) [陈雪, 刘晓威, 张可烨, 袁春华, 张卫平2015 64 164211]

    [5]

    Balram K C, Davanco M, Song J D, Srinivasan K 2016 Nat. Photon. 10 346

    [6]

    O'Connell A D, Hofheinz M, Ansmann M, Bialczak R C, Lenander M, Lucero E, Neeley M, Sank D, Wang H, Weides M, Wenner J, Martinis J M, Cleland A N 2010 Nature 464 697

    [7]

    Chan J, Alegre T P M, Safavi-Naeini A H, Hill J T, Krause A, Gröblacher S, Aspelmeyer M, Painter O 2011 Nature 478 89

    [8]

    Teufel J D, Donner T, Li D, Harlow J W, Allman M S, Cicak K, Sirois A J, Whittaker J D, Lehnert K W, Simmonds R W 2011 Nature 475 359

    [9]

    Agarwal G S, Huang S M 2010 Phys. Rev. A 81 041803

    [10]

    Weis S, Riviere R, Deleglise S, Gavartin E, Arcizet O, Schliesser A, Kippenberg T J 2010 Science 330 1520

    [11]

    Teufel J D, Li D, Allman M S, Cicak K, Sirois A J, Whittaker J D, Simmonds R W 2011 Nature 471 204

    [12]

    Safavi-Naeini A H, Mayer Alegre T P, Chan J, Eichenfield M, Winger M, Lin Q, Hill J T, Chang D E, Painter O 2011 Nature 472 69

    [13]

    Fiore V, Yang Y, Kuzyk M C, Barbour R, Tian L, Wang H 2011 Phys. Rev. Lett. 107 133601

    [14]

    Zhou X, Hocke F, Schliesser A, Marx A, Huebl H, Gross R, Kippenberg T J 2013 Nat. Phys. 9 179

    [15]

    Clark J B, Lecocq F, Simmonds R W, Aumentado J, Teufel J D 2016 Nat. Phys. doi:10.1038/nphys3701

    [16]

    Safavi-Naeini A H, Gröblacher S, Hill J T, Chan J, Aspelmeyer M, Painter O 2013 Nature 500 185

    [17]

    Wollman E E, Lei C U, Weinstein A J, Suh J, Kronwald A, Marquardt F, Clerk A A, Schwab K C 2015 Science 349 952

    [18]

    Gavartin E, Verlot P, Kippenberg T J 2012 Nat. Nanotech. 7 509

    [19]

    Wu M, Hryciw A C, Healey C, Lake D P, Jayakumar H, Freeman M R, Davis J P, Barclay P E 2014 Phys. Rev. X 4 021052

    [20]

    Krause A G, Winger M, Blasius T D, Lin Q, Painter O 2012 Nat. Photon. 6 768

    [21]

    Li J J, Zhu K D 2013 Phys. Rep. 525 223

    [22]

    Fleischhauer M, Imamoglu A, Marangos J P 2005 Rev. Mod. Phys. 77 633

    [23]

    Massel F, Heikkila T T, Pirkkalainen J M, Cho S U, Saloniemi H, Hakonen P J, Sillanpaa M A 2011 Nature 480 351

    [24]

    Jiang C, Chen B, Zhu K D 2011 Europhys. Lett. 94 38002

    [25]

    Basiri-Esfahani S, Akram U, Milburn G J 2012 New J. Phys. 14 085017

    [26]

    He W, Li J J, Zhu K D 2010 Opt. Lett. 35 339

    [27]

    Zhang J Q, Li Y, Feng M, Xu Y 2012 Phys. Rev. A 86 053806

    [28]

    Hill J T, Safavi-Naeini A H, Chan J, Painter O 2012 Nat. Commun. 3 1196

    [29]

    Liu Y C, Xiao Y F, Luan X, Gong Q, Wong C W 2015 Phys. Rev. A 91 033818

    [30]

    Barzanjeh S, Abdi M, Milburn G J, Tombesi P, Vitali D 2012 Phys. Rev. Lett. 109 130503

    [31]

    Massel F, Cho S U, Pirkkalainen J M, Hakonen P J, Heikkila T T, Sillanpaa M A 2012 Nat. Commun. 3 987

    [32]

    Wang Y D, Clerk A A 2012 Phys. Rev. Lett. 108 153603

    [33]

    Guo Y, Li K, Nie W, Li Y 2014 Phys. Rev. A 90 053841

    [34]

    Liu Y C, Xiao, Y F, Luan X S, Chee W W 2015 Sci. China: Physics, Mechanics & Astronomy 58 050305

    [35]

    Liu Y C, Hu Y W, Wong C W, Xiao Y F 2013 Chin. Phys. B 22 114213

    [36]

    Dong C, Fiore V, Kuzyk M C, Wang H 2012 Science 338 1609

    [37]

    Qu K, Agarwal G S 2013 Phys. Rev. A 87 031802

    [38]

    Liu F, Alaie S, Leseman Z S, Hossein-Zadeh M 2013 Opt. Express 21 19555

    [39]

    Shao L, Jiang X F, Yu X C, Li B B, Clements W R, Vollmer F, Wang W, Xiao Y F, Gong Q 2013 Adv. Mater. 25 5616

    [40]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [41]

    Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A 2012 Nat. Nanotechnol. 301 861

    [42]

    Kolkowitz S, Jayich A C, Unterreithmeier Q P, Bennett S D, Rabl P, Harris J G, Lukin M D 2012 Science 335 1603

    [43]

    Li J J, Zhu K D 2011 Phys. Rev. B 83 245421

    [44]

    Peng B, Ozdemir S K, Lei F, Monifi F, Gianfreda M, Long G L, Fan S, Nori F, Bender C M, Yang L 2014 Nat. Phys. 10 394

    [45]

    Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G, Xiao M 2014 Nat. Photon. 8 524

    [46]

    Jing H, Ozdemir S K, Lu X Y, Zhang J, Yang L, Nori F 2014 Phys. Rev. Lett. 113 053604

    [47]

    Schliesser A, Arcizet O, Riviere R, Anetsberger G, Kippenberg T J 2009 Nat. Phys. 5 509

    [48]

    Boyd R W 2010 Nonlinear Optics (3nd Ed.) (San Diego, California: Academic) p315

    [49]

    Gardiner C W, Zoller P 2000 Quantum Noise (2nd Ed.) (Berlin: Springer) p 425

    [50]

    Zhu J, Ozdemir S K, Xiao Y F, Li L, He L, Chen D, Yang L 2010 Nat. Photon. 4 46

    [51]

    Yi X, Xiao Y F, Liu Y C, Li B B, Chen Y L, Li Y, Gong Q 2011 Phys. Rev. A 83 023803

    [52]

    Ekinci K L, Yang Y T, Roukes M L 2004 J. Appl. Phys. 95 2682

    [53]

    Chen B, Jiang C, Zhu K D 2011 Phys. Rev. A 83 055803

    [54]

    Jiang C, Liu H, Cui Y, Li X, Chen G, Chen B 2013 Opt. Express 21 12165

    [55]

    Jiang C, Cui Y, Zhu K D 2014 Opt. Express 22 13773

    [56]

    Yie Z, Zielke M A, Burgner C B, Turner K L 2011 J. Micromech. Microeng. 21 025027

  • [1] 杨肖杰, 许辉, 徐海烨, 李铭, 于鸿飞, 成昱轩, 侯海良, 陈智全. 基于石墨烯等离激元太赫兹结构的传感及慢光应用.  , 2024, 73(15): 157802. doi: 10.7498/aps.73.20240668
    [2] 王鑫, 任飞帆, 韩嵩, 韩海燕, 严冬. 里德伯原子辅助光力系统的完美光力诱导透明及慢光效应.  , 2023, 72(9): 094203. doi: 10.7498/aps.72.20222264
    [3] 谢宝豪, 陈华俊, 孙轶. 多模光力系统中光力诱导透明引起的慢光效应.  , 2023, 72(15): 154203. doi: 10.7498/aps.72.20230663
    [4] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应.  , 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [5] 陈华俊. 基于石墨烯光力系统的非线性光学效应及非线性光学质量传感.  , 2020, 69(13): 134203. doi: 10.7498/aps.69.20191745
    [6] 杨建勇, 陈华俊. 基于超强耦合量子点-纳米机械振子系统的全光学质量传感.  , 2019, 68(24): 246302. doi: 10.7498/aps.68.20190607
    [7] 张利巍, 李贤丽, 杨柳. 蓝失谐驱动下双腔光力系统中的光学非互易性.  , 2019, 68(17): 170701. doi: 10.7498/aps.68.20190205
    [8] 张秀龙, 鲍倩倩, 杨明珠, 田雪松. 双腔光力学系统中输出光场纠缠特性的研究.  , 2018, 67(10): 104203. doi: 10.7498/aps.67.20172467
    [9] 陈雪, 刘晓威, 张可烨, 袁春华, 张卫平. 腔光力学系统中的量子测量.  , 2015, 64(16): 164211. doi: 10.7498/aps.64.164211
    [10] 赵建朋, 罗斌, 潘炜, 闫连山, 朱宏娜, 邹喜华, 叶佳. 光纤参量放大增益谱边带快慢光特性研究.  , 2014, 63(4): 044203. doi: 10.7498/aps.63.044203
    [11] 魏巍, 张霞, 于辉, 李宇鹏, 张阳安, 黄永清, 陈伟, 罗文勇, 任晓敏. 高非线性微结构光纤中基于受激布里渊散射的慢光延迟.  , 2013, 62(18): 184208. doi: 10.7498/aps.62.184208
    [12] 邱巍, 高波, 林鹏, 周婧婷, 李佳, 蒋秋莉, 吕品, 马英驰. 掺铒光纤中亚稳态粒子振荡和慢光时间延迟关系研究.  , 2013, 62(21): 214205. doi: 10.7498/aps.62.214205
    [13] 郑狄, 潘炜. 非线性光纤环镜在受激布里渊散射慢光级联系统中的可行性研究.  , 2011, 60(6): 064210. doi: 10.7498/aps.60.064210
    [14] 张敬, 掌蕴东, 张学楠, 喻波, 王金芳, 王楠, 田赫, 袁萍. 光学谐振系统中慢光特性研究.  , 2011, 60(2): 024218. doi: 10.7498/aps.60.024218
    [15] 尹经禅, 肖晓晟, 杨昌喜. 基于光纤四波混频波长转换和色散的慢光实验研究.  , 2010, 59(6): 3986-3991. doi: 10.7498/aps.59.3986
    [16] 张旨遥, 周晓军, 石胜辉, 梁锐. 矩形谱宽带光抽运的布里渊慢光中脉冲失真的分析.  , 2010, 59(7): 4694-4700. doi: 10.7498/aps.59.4694
    [17] 王楠, 掌蕴东, 王金芳, 田赫, 王号, 张学楠, 张敬, 袁萍. 环中环结构谐振腔中的耦合谐振透明特性研究.  , 2009, 58(11): 7672-7679. doi: 10.7498/aps.58.7672
    [18] 王士鹤, 任立勇, 刘宇. 光纤中基于双宽带抽运的受激布里渊散射增益谱展宽及慢光传输中脉冲失真减小的理论研究.  , 2009, 58(6): 3943-3948. doi: 10.7498/aps.58.3943
    [19] 鲁辉, 田慧平, 李长红, 纪越峰. 基于二维光子晶体耦合腔波导的新型慢光结构研究.  , 2009, 58(3): 2049-2055. doi: 10.7498/aps.58.2049
    [20] 邱 巍, 掌蕴东, 叶建波, 田 赫, 王 楠, 王金芳, 袁 萍. 室温条件下掺铒光纤中光脉冲群速可控特性的研究.  , 2007, 56(12): 7009-7014. doi: 10.7498/aps.56.7009
计量
  • 文章访问数:  6397
  • PDF下载量:  367
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-11
  • 修回日期:  2016-07-08
  • 刊出日期:  2016-10-05

/

返回文章
返回
Baidu
map