Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

In-situ strain engineering and applications of van der Waals materials

Ma Ze-Cheng Liu Zeng-Lin Cheng Bin Liang Shi-Jun Miao Feng

Citation:

In-situ strain engineering and applications of van der Waals materials

Ma Ze-Cheng, Liu Zeng-Lin, Cheng Bin, Liang Shi-Jun, Miao Feng
PDF
HTML
Get Citation
  • Van der Waals (vdW) materials have attracted extensive research interest in the field of strain engineering due to their unique structure and excellent performance. By changing the atomic lattice and electronic structure, strain can modulate the novel physical properties of vdW materials and generate new quantum states, ultimately realize high-performance electronic devices based on new principles. In this paper, we first comprehensively review various experimental strategies of inducing in-situ strain, which include the bending deformation of flexible substrates, mechanical stretching of microelectromechanical systems and electrodeformation of piezoelectric substrates. Then, we outline the recent research progresses of in-situ strain-modulated magnetism, superconductivity and topological properties in vdW materials, as well as the development of strain-related device applications, such as intelligent strain sensors and strain-programmable probabilistic computing. Finally, we examine the current challenges and provide insights into potential opportunities in the field of strain engineering.
      Corresponding author: Liang Shi-Jun, sjliang@nju.edu.cn ; Miao Feng, miao@nju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 62122036, 62034004, 12322407, 61921005, 12074176), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB44000000), the AIQ Foundation, and the Program B for Outstanding PhD Candidate of Nanjing University, China.
    [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451Google Scholar

    [3]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502Google Scholar

    [8]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [9]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [10]

    Qian X, Liu J, Fu L, Li J 2014 Science 346 1344Google Scholar

    [11]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [12]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [13]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [14]

    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336Google Scholar

    [15]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [16]

    吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国 2022 71 048502Google Scholar

    Wu Y F, Zhu M Y, Zhao R J, Liu X J, Zhao Y C, Wei H X, Zhang J Y, Zheng X Q, Shen J X, Huang H, Wang S G 2022 Acta Phys. Sin. 71 048502Google Scholar

    [17]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [18]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [19]

    Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [20]

    Burch K S, Mandrus D, Park J G 2018 Nature 56 3 47

    [21]

    Deng S, Sumant A V, Berry V 2018 Nano Today 22 14Google Scholar

    [22]

    Miao F, Liang S J, Cheng B 2021 npj Quantum Mater. 6 59Google Scholar

    [23]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [24]

    Dai Z, Liu L, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [25]

    Pandey M, Pandey C, Ahuja R, Kumar R 2023 Nano Energy 109 108278Google Scholar

    [26]

    Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S 2022 Chin. Phys. Lett. 39 127301Google Scholar

    [27]

    Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301Google Scholar

    [28]

    孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平 2023 72 076301Google Scholar

    Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023 Acta Phys. Sin. 72 076301Google Scholar

    [29]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470Google Scholar

    [30]

    Yang S, Chen Y, Jiang C 2021 InfoMat 3 397Google Scholar

    [31]

    Chen C, Das P, Aytan E, Zhou W, Horowitz J, Satpati B, Balandin A A, Lake R K, Wei P 2020 ACS Appl. Mater. Interfaces 12 38744Google Scholar

    [32]

    Kim J M, Haque M F, Hsieh E Y, Nahid S M, Zarin I, Jeong K Y, So J P, Park H G, Nam S 2023 Adv. Mater. 35 2107362Google Scholar

    [33]

    Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y, Chen Y P 2023 Adv. Mater. 35 2205714

    [34]

    Ren H, Xiang G 2023 Nanomaterials 13 2378Google Scholar

    [35]

    Wang G, Yang K, Ma Y, Liu L, Lu D, Zhou Y, Wu H 2023 Chin. Phys. Lett. 40 077301Google Scholar

    [36]

    Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771Google Scholar

    [37]

    Wang Y, Wang C, Liang S-J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S-W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [38]

    Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A, Coldea A I 2021 Phys. Rev. B 103 205139Google Scholar

    [39]

    Kim H, Uddin S Z, Lien D H, Yeh M, Azar N S, Balendhran S, Kim T, Gupta N, Rho Y, Grigoropoulos C P, Crozier K B, Javey A 2021 Nature 596 232Google Scholar

    [40]

    Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J H, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256Google Scholar

    [41]

    Cenker J, Ovchinnikov D, Yang H, Chica D G, Zhu C, Cai J, Diederich G M, Liu Z, Zhu X, Roy X, Cao T, Daniels M W, Chu J H, Xiao D, Xu X 2023 arXiv: 2301.03759v1 [cond-mat. mes-hall]

    [42]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [43]

    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645Google Scholar

    [44]

    Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P, Schönenberger C 2019 Nano Lett. 19 4097Google Scholar

    [45]

    Wang L, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147Google Scholar

    [46]

    Goldsche M, Sonntag J, Khodkov T, Verbiest G J, Reichardt S, Neumann C, Ouaj T, Von den Driesch N, Buca D, Stampfer C 2018 Nano Lett. 18 1707Google Scholar

    [47]

    Cao K, Feng S, Han Y, Gao L, Ly T H, Xu Z, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [48]

    Nicholl R J T, Lavrik N V, Vlassiouk I, Srijanto B R, Bolotin K I 2017 Phys. Rev. Lett. 118 266101Google Scholar

    [49]

    Cui X, Dong W, Feng S, Wang G, Wang C, Wang S, Zhou Y, Qiu X, Liu L, Xu Z, Zhang Z 2023 Small 19 2301959Google Scholar

    [50]

    Roldán R, Castellanos-Gomez A, Cappelluti E, Guinea F 2015 J. Phys. Condens. Matter 27 313201Google Scholar

    [51]

    Hwangbo K, Rosenberg E, Cenker J, Jiang Q, Wen H, Xiao D, Chu J H, Xu X 2024 arXiv: 2308.08734v2 [cond-mat. str-el]

    [52]

    Pérez Garza H H, Kievit E W, Schneider G F, Staufer U 2014 Nano Lett. 14 4107Google Scholar

    [53]

    Pasquier V, Scarfato A, Martinez-Castro J, Guipet A, Renner C 2023 Rev. Sci. Instrum. 94 013905Google Scholar

    [54]

    Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H, Wu S M 2019 Nat. Nanotechnol. 14 668Google Scholar

    [55]

    Huang S, Zhang G, Fan F, Song C, Wang F, Xing Q, Wang C, Wu H, Yan H 2019 Nat. Commun. 10 2447Google Scholar

    [56]

    Ci W, Yang H, Xue W, Yang R, L B, Wang P, Li R-W, Xu X-H 2022 Nano Res. 15 7597Google Scholar

    [57]

    Lin Z, Peng Y, Wu B, Wang C, Luo Z, Yang J 2022 Chin. Phys. B 31 087506Google Scholar

    [58]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [59]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z 2018 Nat. Nanotechnol. 13 554Google Scholar

    [60]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [61]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [62]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [63]

    Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D, Xu X 2019 Nat. Mater. 18 1298Google Scholar

    [64]

    Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [65]

    Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646Google Scholar

    [66]

    Sheng P, Wang B, Li R 2018 J. Semicond. 39 011006Google Scholar

    [67]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K-M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187Google Scholar

    [68]

    Šiškins M, Lee M, Mañas-Valero S, Coronado E, Blanter Y M, Van der Zant H S J, Steeneken P G 2020 Nat. Commun. 11 2698Google Scholar

    [69]

    Bukharaev A A, Zvezdin A K, Pyatakov A P, Fetisov Y K 2018 Phys. Usp. 61 1175Google Scholar

    [70]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [71]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [72]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [73]

    Wadley P, Reimers S, Grzybowski M J, Andrews C, Wang M, Chauhan J S, Gallagher B L, Campion R P, Edmonds K W, Dhesi S S, Maccherozzi F, Novak V, Wunderlich J, Jungwirth T 2018 Nat. Nanotechnol. 13 362Google Scholar

    [74]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229Google Scholar

    [75]

    Ni Z, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L, Wu L 2021 Nat. Nanotechnol. 16 782Google Scholar

    [76]

    Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214Google Scholar

    [77]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar

    [78]

    Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283Google Scholar

    [79]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710Google Scholar

    [80]

    Lin C, Ochi M, Noguchi R, Kuroda K, Sakoda M, Nomura A, Tsubota M, Zhang P, Bareille C, Kurokawa K, Arai Y, Kawaguchi K, Tanaka H, Yaji K, Harasawa A, Hashimoto M, Lu D, Shin S, Arita R, Tanda S, Kondo T 2021 Nat. Mater. 20 1093Google Scholar

    [81]

    Zhu C S, Lei B, Sun Z L, Cui J H, Shi M Z, Zhuo W Z, Luo X G, Chen X H 2021 Phys. Rev. B 104 024509Google Scholar

    [82]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001Google Scholar

    [83]

    Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, Davis J C S 2017 Science 357 75Google Scholar

    [84]

    Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, Chen X H 2020 Phys. Rev. X 10 011034Google Scholar

    [85]

    Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507Google Scholar

    [86]

    Nabeshima F, Kawai M, Ishikawa T, Shikama N, Maeda A 2018 Jpn. J. Appl. Phys. 57 120314Google Scholar

    [87]

    Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P, Hicks C W 2021 Phys. Rev. X 11 021038Google Scholar

    [88]

    Cheng Z, Lei B, Luo X, Ying J, Wang Z, Wu T, Chen X 2021 Chin. Phys. B 30 097403Google Scholar

    [89]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [90]

    Xiao D, Chang MC, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [91]

    You J S, Fang S, Xu S Y, Kaxiras E, Low T 2018 Phys. Rev. B 98 121109Google Scholar

    [92]

    Son J, Kim K H, Ahn Y H, Lee H W, Lee J 2019 Phys. Rev. Lett. 123 036806Google Scholar

    [93]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [94]

    Murakami S, Kuga S I 2008 Phys. Rev. B 78 165313Google Scholar

    [95]

    Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D, Li Y, Zheng H, Liu J, Jia J 2020 Phys. Rev. Lett. 125 046801Google Scholar

    [96]

    Zhang P, Noguchi R, Kuroda K, Lin C, Kawaguchi K, Yaji K, Harasawa A, Lippmaa M, Nie S, Weng H, Kandyba V, Giampietri A, Barinov A, Li Q, Gu G D, Shin S, Kondo T 2021 Nat. Commun. 12 406Google Scholar

    [97]

    Flötotto D, Bai Y, Chan Y H, Chen P, Wang X, Rossi P, Xu C Z, Zhang C, Hlevyack J A, Denlinger J D, Hong H, Chou M Y, Mittemeijer E J, Eckstein J N, Chiang T C 2018 Nano Lett. 18 5628Google Scholar

    [98]

    Liu J, Zhou Y, Yepez Rodriguez S, Delmont M A, Welser R A, Ho T, Sirica N, McClure K, Vilmercati P, Ziller J W, Mannella N, Sanchez-Yamagishi J D, Pettes M T, Wu R, Jauregui L A 2024 Nat. Commun. 15 332Google Scholar

    [99]

    Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z 2013 Adv. Mater. 25 5997Google Scholar

    [100]

    Chortos A, Liu J, Bao Z 2016 Nat. Mater. 15 937Google Scholar

    [101]

    Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X 2020 Adv. Mater. 32 1902062Google Scholar

    [102]

    Qi J, Lan Y W, Stieg A Z, Chen J H, Zhong Y L, Li L J, Chen C D, Zhang Y, Wang K L 2015 Nat. Commun. 6 7430Google Scholar

    [103]

    Zhao J, Wang G, Yang R, Lu X, Cheng M, He C, Xie G, Meng J, Shi D, Zhang G 2015 ACS Nano 9 1622Google Scholar

    [104]

    Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, Hu P 2016 Chem. Mater. 28 4278Google Scholar

    [105]

    Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar

    [106]

    Yan W, Fuh H R, Lü Y, Chen K Q, Tsai T Y, Wu Y R, Shieh T H, Hung K M, Li J, Zhang D, Ó Coileáin C, Arora S K, Wang Z, Jiang Z, Chang C R, Wu H C 2021 Nat. Commun. 12 2018Google Scholar

    [107]

    Grabovskij G J, Peichl T, Lisenfeld J, Weiss G, Ustinov A V 2012 Science 338 232Google Scholar

    [108]

    Sun Y, Lin T, Lei N, Chen X, Kang W, Zhao Z, Wei D, Chen C, Pang S, Hu L, Yang L, Dong E, Zhao L, Liu L, Yuan Z, Ullrich A, Back C H, Zhang J, Pan D, Zhao J, Feng M, Fert A, Zhao W 2023 Nat. Commun. 14 3434Google Scholar

    [109]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378Google Scholar

    [110]

    D’Souza N, Biswas A, Ahmad H, Fashami M S, Al-Rashid M M, Sampath V, Bhattacharya D, Abeed M A, Atulasimha J, Bandyopadhyay S 2018 Nanotechnology 29 442001Google Scholar

    [111]

    Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z 2019 Nat. Nanotechnol. 14 131Google Scholar

    [112]

    Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V, Udalov O G 2020 Phys. Rev. Lett. 124 157202Google Scholar

    [113]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [114]

    Borders W A, Pervaiz A Z, Fukami S, Camsari K Y, Ohno H, Datta S 2019 Nature 573 390Google Scholar

    [115]

    Safranski C, Kaiser J, Trouilloud P, Hashemi P, Hu G, Sun J Z 2021 Nano Lett. 21 2040Google Scholar

    [116]

    Camsari K Y, Faria R, Sutton B M, Datta S 2017 Phys. Rev. X 7 031014Google Scholar

    [117]

    Camsari K Y, Sutton B M, Datta S 2019 Appl. Phys. Rev. 6 011305Google Scholar

    [118]

    Kaiser J, Datta S 2021 Appl. Phys. Lett. 119 150503Google Scholar

    [119]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W, Yu T, Qiu C, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246Google Scholar

    [120]

    Li Z, Lü Y, Ren L, Li J, Kong L, Zeng Y, Tao Q, Wu R, Ma H, Zhao B, Wang D, Dang W, Chen K, Liao L, Duan X, Duan X, Liu Y 2020 Nat. Commun. 11 1151Google Scholar

  • 图 1  范德瓦耳斯材料的原位应变工程与应用研究概述[3641]

    Figure 1.  Summary of in-situ strain engineering and application in vdW materials[3641].

    图 2  原位应变施加方式 (a) 柔性衬底弯曲诱导的单轴应变[45]; (b) 微纳机电系统实现的单轴应变[51]; (c) 柔性衬底弯曲导致的双轴应变[53]; (d) 压电衬底形变导致的双轴应变[54]

    Figure 2.  Strategies for inducing in-situ strain: (a) Uniaxial strain induced by bending the flexible substrate[45]; (b) uniaxial strain induced through a microelectromechanical system (MEMs)[51]; (c) biaxial strain caused by bending the flexible substrate[53]; (d) biaxial strain caused by the deformation of the piezoelectric substrate[54].

    图 3  范德瓦耳斯磁性材料的应变调控 (a) 应变对Fe3GeTe2铁磁性能的调控[37]; (b) 应变辅助的磁化翻转[37]; (c) MnPSe3中奈尔矢量与应变方向的关系[75]; (d) 应变诱导CrSBr从反铁磁态到铁磁态的转变[40]; (e) 面内反铁磁态到铁磁态转变的示意图[40]

    Figure 3.  Strain-modulated magnetism in vdW materials: (a) Strain-modulated ferromagnetic properties in Fe3GeTe2[37]; (b) strain-assisted magnetization reversal[37]; (c) relationship between the Néel vector and different strain directions in MnPSe3[75]; (d) strain-induced antiferromagnetic-to-ferromagnetic phase transition in CrSBr[40]; (e) diagram of in-plane antiferromagnetic-to-ferromagnetic phase transition[40].

    图 4  范德瓦耳斯超导体的应变调控 (a) FeSe块体中应变诱导的电阻各向异性[87]; (b) 不同应变类型的示意图(εA1g是非对称破缺型应变, εB1g是破坏四重旋转对称性的应变)[88]; (c) FeSe块体中超导现象与应变的关系[87]; (d) FeSe薄片中向列相和超导相与应变的关系[88]

    Figure 4.  Strain-modulated superconductivity in vdW materials: (a) Strain-induced nematic resistive anisotropy in FeSe bulk[87]; (b) schematics of different strain types (εA1g is non-symmetry-breaking strain and εB1g is the strain component that breaks the four-fold rotational symmetry.)[88]; (c) strain-dependent superconductivity in FeSe bulk[87]; (d) strain-dependent nematic and superconducting transition in FeSe thin flake[88].

    图 5  范德瓦耳斯拓扑材料的应变调控 (a)—(c) MoS2中应变方向(依次为无应变、沿锯齿形方向应变和沿扶手椅方向应变)依赖的谷磁化和贝里曲率偶极子[92]; (d), (e) ZrTe5在负应变和正应变下的负纵向磁阻, 分别对应强拓扑绝缘相和弱拓扑绝缘相[36], 负磁阻在临界应变处最强, 表明无带隙的狄拉克半金属相; (f) TaSe3中强拓扑绝缘相、平庸半金属相和平庸绝缘相在角分辨光电子能谱中的费米面[80]; (g) TaSe3在不同应变下费米能级的光谱强度演变[80]

    Figure 5.  Strain-modulated topological properties in vdW materials: Valley magnetization and Berry curvature dipole of MoS2 under zero strain (a), 0.55% strain along the zigzag direction (b) and 0.55% strain along the armchair direction (c), respectively[92]; negative longitudinal magnetoresistance of ZrTe5 for negative strains (d) and positive strains (e) measured relative to a critical strain, corresponding to the phases of the strong topological insulator and weak topological insulator, respectively[36]. The negative magnetoresistance is strongest at the critical strain, where ZrTe5 is a gapless Dirac semimetal; (f) measured Fermi surfaces of TaSe3 in the phases of strong topological insulator, trivial semimetal and trivial insulator, respectively[80]; (g) evolution of the spectral intensity at the Fermi level with different strain values in TaSe3 [80].

    图 6  应变工程的器件应用 (a) 用于监测不同频率声音的SnS2应变传感器[106]; (b) 用于探测不同CH4气体浓度的黑磷LED传感器[39]; (c) 用于探测不同CO2气体浓度的黑磷LED传感器[39]; (d) CrSBr磁性隧道结中磁序的应变调控示意图[41]; (e) 磁序随静态压电电压的响应函数[41], 0表示稳定的反铁磁态, 1表示稳定的铁磁态; (f) 响应函数接近0.5时, 隧穿电流(上)和转换后的二进制序列(下)随时间的变化, 表明磁性层的磁序处于反铁磁态或铁磁态的概率相等[41]

    Figure 6.  Device applications of strain engineering: (a) SnS2 based strain sensor for detecting sound with different frequencies[106]; sensor response characteristics of a black phosphorus LED (0.3%; tensile) at varying concentrations of CH4 pulses (b) and a black phosphorus LED (0.2%; compressive) at varying concentrations of CO2 pulses (c)[39]; (d) schematic of strain tuning between magnetic domains in CrSBr magnetic tunnel junction[41]; (e) response function of a magnetic domain as a function of static piezo voltage[41], a value of either 0 or 1 indicates a stable domain; (f) tunneling current (top) and converted binary sequence (bottom) over time when the response function is near 0.5, indicating the equal probability between antiferromagnetic and ferromagnetic phases.

    Baidu
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar

    [2]

    Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 PNAS 102 10451Google Scholar

    [3]

    Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385Google Scholar

    [4]

    Bertolazzi S, Brivio J, Kis A 2011 ACS Nano 5 9703Google Scholar

    [5]

    Geim A K 2009 Science 324 1530Google Scholar

    [6]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [7]

    Ma H X, Xing Y H, Cui B Y, Han J, Wang B H, Zeng Z M 2022 Chin. Phys. B 31 108502Google Scholar

    [8]

    Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193Google Scholar

    [9]

    Geim A K, Grigorieva I V 2013 Nature 499 419Google Scholar

    [10]

    Qian X, Liu J, Fu L, Li J 2014 Science 346 1344Google Scholar

    [11]

    Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X, Ji S H 2016 Science 353 274Google Scholar

    [12]

    Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P, Xu X 2017 Nature 546 270Google Scholar

    [13]

    Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J, Zhang X 2017 Nature 546 265Google Scholar

    [14]

    Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X, Cobden D H 2018 Nature 560 336Google Scholar

    [15]

    Deng Y, Yu Y, Shi M Z, Guo Z, Xu Z, Wang J, Chen X H, Zhang Y 2020 Science 367 895Google Scholar

    [16]

    吴燕飞, 朱梦媛, 赵瑞杰, 刘心洁, 赵云驰, 魏红祥, 张静言, 郑新奇, 申见昕, 黄河, 王守国 2022 71 048502Google Scholar

    Wu Y F, Zhu M Y, Zhao R J, Liu X J, Zhao Y C, Wei H X, Zhang J Y, Zheng X Q, Shen J X, Huang H, Wang S G 2022 Acta Phys. Sin. 71 048502Google Scholar

    [17]

    Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N, Strano M S 2012 Nat. Nanotechnol. 7 699Google Scholar

    [18]

    Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutiérrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W, Goldberger J E 2013 ACS Nano 7 2898Google Scholar

    [19]

    Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y, Duan X 2016 Nat. Rev. Mater. 1 16042Google Scholar

    [20]

    Burch K S, Mandrus D, Park J G 2018 Nature 56 3 47

    [21]

    Deng S, Sumant A V, Berry V 2018 Nano Today 22 14Google Scholar

    [22]

    Miao F, Liang S J, Cheng B 2021 npj Quantum Mater. 6 59Google Scholar

    [23]

    Akinwande D, Petrone N, Hone J 2014 Nat. Commun. 5 5678Google Scholar

    [24]

    Dai Z, Liu L, Zhang Z 2019 Adv. Mater. 31 1805417Google Scholar

    [25]

    Pandey M, Pandey C, Ahuja R, Kumar R 2023 Nano Energy 109 108278Google Scholar

    [26]

    Gao R, Liu C, Fang L, Yao B, Wu W, Xiao Q, Hu S, Liu Y, Gao H, Cao S 2022 Chin. Phys. Lett. 39 127301Google Scholar

    [27]

    Zhu C R, Wang G, Liu B L, Marie X, Qiao X F, Zhang X, Wu X X, Fan H, Tan P H, Amand T, Urbaszek B 2013 Phys. Rev. B 88 121301Google Scholar

    [28]

    孙婷钰, 吴量, 何贤娟, 姜楠, 周文哲, 欧阳方平 2023 72 076301Google Scholar

    Sun T Y, Wu L, He X J, Jiang N, Zhou W Z, Ouyang F P 2023 Acta Phys. Sin. 72 076301Google Scholar

    [29]

    Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz T F, Hone J, Wang Z L 2014 Nature 514 470Google Scholar

    [30]

    Yang S, Chen Y, Jiang C 2021 InfoMat 3 397Google Scholar

    [31]

    Chen C, Das P, Aytan E, Zhou W, Horowitz J, Satpati B, Balandin A A, Lake R K, Wei P 2020 ACS Appl. Mater. Interfaces 12 38744Google Scholar

    [32]

    Kim J M, Haque M F, Hsieh E Y, Nahid S M, Zarin I, Jeong K Y, So J P, Park H G, Nam S 2023 Adv. Mater. 35 2107362Google Scholar

    [33]

    Qi Y, Sadi M A, Hu D, Zheng M, Wu Z, Jiang Y, Chen Y P 2023 Adv. Mater. 35 2205714

    [34]

    Ren H, Xiang G 2023 Nanomaterials 13 2378Google Scholar

    [35]

    Wang G, Yang K, Ma Y, Liu L, Lu D, Zhou Y, Wu H 2023 Chin. Phys. Lett. 40 077301Google Scholar

    [36]

    Mutch J, Chen W C, Went P, Qian T, Wilson I Z, Andreev A, Chen C C, Chu J H 2019 Sci. Adv. 5 eaav9771Google Scholar

    [37]

    Wang Y, Wang C, Liang S-J, Ma Z, Xu K, Liu X, Zhang L, Admasu A S, Cheong S-W, Wang L, Chen M, Liu Z, Cheng B, Ji W, Miao F 2020 Adv. Mater. 32 2004533Google Scholar

    [38]

    Ghini M, Bristow M, Prentice J C A, Sutherland S, Sanna S, Haghighirad A A, Coldea A I 2021 Phys. Rev. B 103 205139Google Scholar

    [39]

    Kim H, Uddin S Z, Lien D H, Yeh M, Azar N S, Balendhran S, Kim T, Gupta N, Rho Y, Grigoropoulos C P, Crozier K B, Javey A 2021 Nature 596 232Google Scholar

    [40]

    Cenker J, Sivakumar S, Xie K, Miller A, Thijssen P, Liu Z, Dismukes A, Fonseca J, Anderson E, Zhu X, Roy X, Xiao D, Chu J H, Cao T, Xu X 2022 Nat. Nanotechnol. 17 256Google Scholar

    [41]

    Cenker J, Ovchinnikov D, Yang H, Chica D G, Zhu C, Cai J, Diederich G M, Liu Z, Zhu X, Roy X, Cao T, Daniels M W, Chu J H, Xiao D, Xu X 2023 arXiv: 2301.03759v1 [cond-mat. mes-hall]

    [42]

    Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544Google Scholar

    [43]

    Wang Y, Yang R, Shi Z, Zhang L, Shi D, Wang E, Zhang G 2011 ACS Nano 5 3645Google Scholar

    [44]

    Wang L, Zihlmann S, Baumgartner A, Overbeck J, Watanabe K, Taniguchi T, Makk P, Schönenberger C 2019 Nano Lett. 19 4097Google Scholar

    [45]

    Wang L, Baumgartner A, Makk P, Zihlmann S, Varghese B S, Indolese D I, Watanabe K, Taniguchi T, Schönenberger C 2021 Commun. Phys. 4 147Google Scholar

    [46]

    Goldsche M, Sonntag J, Khodkov T, Verbiest G J, Reichardt S, Neumann C, Ouaj T, Von den Driesch N, Buca D, Stampfer C 2018 Nano Lett. 18 1707Google Scholar

    [47]

    Cao K, Feng S, Han Y, Gao L, Ly T H, Xu Z, Lu Y 2020 Nat. Commun. 11 284Google Scholar

    [48]

    Nicholl R J T, Lavrik N V, Vlassiouk I, Srijanto B R, Bolotin K I 2017 Phys. Rev. Lett. 118 266101Google Scholar

    [49]

    Cui X, Dong W, Feng S, Wang G, Wang C, Wang S, Zhou Y, Qiu X, Liu L, Xu Z, Zhang Z 2023 Small 19 2301959Google Scholar

    [50]

    Roldán R, Castellanos-Gomez A, Cappelluti E, Guinea F 2015 J. Phys. Condens. Matter 27 313201Google Scholar

    [51]

    Hwangbo K, Rosenberg E, Cenker J, Jiang Q, Wen H, Xiao D, Chu J H, Xu X 2024 arXiv: 2308.08734v2 [cond-mat. str-el]

    [52]

    Pérez Garza H H, Kievit E W, Schneider G F, Staufer U 2014 Nano Lett. 14 4107Google Scholar

    [53]

    Pasquier V, Scarfato A, Martinez-Castro J, Guipet A, Renner C 2023 Rev. Sci. Instrum. 94 013905Google Scholar

    [54]

    Hou W, Azizimanesh A, Sewaket A, Peña T, Watson C, Liu M, Askari H, Wu S M 2019 Nat. Nanotechnol. 14 668Google Scholar

    [55]

    Huang S, Zhang G, Fan F, Song C, Wang F, Xing Q, Wang C, Wu H, Yan H 2019 Nat. Commun. 10 2447Google Scholar

    [56]

    Ci W, Yang H, Xue W, Yang R, L B, Wang P, Li R-W, Xu X-H 2022 Nano Res. 15 7597Google Scholar

    [57]

    Lin Z, Peng Y, Wu B, Wang C, Luo Z, Yang J 2022 Chin. Phys. B 31 087506Google Scholar

    [58]

    Deng Y, Yu Y, Song Y, Zhang J, Wang N Z, Sun Z, Yi Y, Wu Y Z, Wu S, Zhu J, Wang J, Chen X H, Zhang Y 2018 Nature 563 94Google Scholar

    [59]

    Wang Z, Zhang T, Ding M, Dong B, Li Y, Chen M, Li X, Huang J, Wang H, Zhao X, Li Y, Li D, Jia C, Sun L, Guo H, Ye Y, Sun D, Chen Y, Yang T, Zhang J, Ono S, Han Z, Zhang Z 2018 Nat. Nanotechnol. 13 554Google Scholar

    [60]

    Jiang S, Li L, Wang Z, Mak K F, Shan J 2018 Nat. Nanotechnol. 13 549Google Scholar

    [61]

    Huang B, Clark G, Klein D R, MacNeill D, Navarro-Moratalla E, Seyler K L, Wilson N, McGuire M A, Cobden D H, Xiao D, Yao W, Jarillo-Herrero P, Xu X 2018 Nat. Nanotechnol. 13 544Google Scholar

    [62]

    Jiang S, Shan J, Mak K F 2018 Nat. Mater. 17 406Google Scholar

    [63]

    Song T, Fei Z, Yankowitz M, Lin Z, Jiang Q, Hwangbo K, Zhang Q, Sun B, Taniguchi T, Watanabe K, McGuire M A, Graf D, Cao T, Chu J-H, Cobden D H, Dean C R, Xiao D, Xu X 2019 Nat. Mater. 18 1298Google Scholar

    [64]

    Li T, Jiang S, Sivadas N, Wang Z, Xu Y, Weber D, Goldberger J E, Watanabe K, Taniguchi T, Fennie C J, Fai Mak K, Shan J 2019 Nat. Mater. 18 1303Google Scholar

    [65]

    Mak K F, Shan J, Ralph D C 2019 Nat. Rev. Phys. 1 646Google Scholar

    [66]

    Sheng P, Wang B, Li R 2018 J. Semicond. 39 011006Google Scholar

    [67]

    Zhong D, Seyler K L, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, McGuire M A, Fu K-M C, Xiao D, Yao W, Xu X 2020 Nat. Nanotechnol. 15 187Google Scholar

    [68]

    Šiškins M, Lee M, Mañas-Valero S, Coronado E, Blanter Y M, Van der Zant H S J, Steeneken P G 2020 Nat. Commun. 11 2698Google Scholar

    [69]

    Bukharaev A A, Zvezdin A K, Pyatakov A P, Fetisov Y K 2018 Phys. Usp. 61 1175Google Scholar

    [70]

    Zhuang H L, Kent P R C, Hennig R G 2016 Phys. Rev. B 93 134407Google Scholar

    [71]

    Webster L, Yan J A 2018 Phys. Rev. B 98 144411Google Scholar

    [72]

    Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F, Dhesi S S, Martin S Y, Wagner T, Wunderlich J, Freimuth F, Mokrousov Y, Kuneš J, Chauhan J S, Grzybowski M J, Rushforth A W, Edmonds K W, Gallagher B L, Jungwirth T 2016 Science 351 587Google Scholar

    [73]

    Wadley P, Reimers S, Grzybowski M J, Andrews C, Wang M, Chauhan J S, Gallagher B L, Campion R P, Edmonds K W, Dhesi S S, Maccherozzi F, Novak V, Wunderlich J, Jungwirth T 2018 Nat. Nanotechnol. 13 362Google Scholar

    [74]

    Němec P, Fiebig M, Kampfrath T, Kimel A V 2018 Nat. Phys. 14 229Google Scholar

    [75]

    Ni Z, Haglund A V, Wang H, Xu B, Bernhard C, Mandrus D G, Qian X, Mele E J, Kane C L, Wu L 2021 Nat. Nanotechnol. 16 782Google Scholar

    [76]

    Song T, Cai X, Tu M W Y, Zhang X, Huang B, Wilson N P, Seyler K L, Zhu L, Taniguchi T, Watanabe K, McGuire M A, Cobden D H, Xiao D, Yao W, Xu X 2018 Science 360 1214Google Scholar

    [77]

    Klein D R, MacNeill D, Lado J L, Soriano D, Navarro-Moratalla E, Watanabe K, Taniguchi T, Manni S, Canfield P, Fernández-Rossier J, Jarillo-Herrero P 2018 Science 360 1218Google Scholar

    [78]

    Hicks C W, Brodsky D O, Yelland E A, Gibbs A S, Bruin J A N, Barber M E, Edkins S D, Nishimura K, Yonezawa S, Maeno Y, Mackenzie A P 2014 Science 344 283Google Scholar

    [79]

    Chu J H, Kuo H H, Analytis J G, Fisher I R 2012 Science 337 710Google Scholar

    [80]

    Lin C, Ochi M, Noguchi R, Kuroda K, Sakoda M, Nomura A, Tsubota M, Zhang P, Bareille C, Kurokawa K, Arai Y, Kawaguchi K, Tanaka H, Yaji K, Harasawa A, Hashimoto M, Lu D, Shin S, Arita R, Tanda S, Kondo T 2021 Nat. Mater. 20 1093Google Scholar

    [81]

    Zhu C S, Lei B, Sun Z L, Cui J H, Shi M Z, Zhuo W Z, Luo X G, Chen X H 2021 Phys. Rev. B 104 024509Google Scholar

    [82]

    Lederer S, Schattner Y, Berg E, Kivelson S A 2015 Phys. Rev. Lett. 114 097001Google Scholar

    [83]

    Sprau P O, Kostin A, Kreisel A, Böhmer A E, Taufour V, Canfield P C, Mukherjee S, Hirschfeld P J, Andersen B M, Davis J C S 2017 Science 357 75Google Scholar

    [84]

    Li J, Lei B, Zhao D, Nie L P, Song D W, Zheng L X, Li S J, Kang B L, Luo X G, Wu T, Chen X H 2020 Phys. Rev. X 10 011034Google Scholar

    [85]

    Phan G N, Nakayama K, Sugawara K, Sato T, Urata T, Tanabe Y, Tanigaki K, Nabeshima F, Imai Y, Maeda A, Takahashi T 2017 Phys. Rev. B 95 224507Google Scholar

    [86]

    Nabeshima F, Kawai M, Ishikawa T, Shikama N, Maeda A 2018 Jpn. J. Appl. Phys. 57 120314Google Scholar

    [87]

    Bartlett J M, Steppke A, Hosoi S, Noad H, Park J, Timm C, Shibauchi T, Mackenzie A P, Hicks C W 2021 Phys. Rev. X 11 021038Google Scholar

    [88]

    Cheng Z, Lei B, Luo X, Ying J, Wang Z, Wu T, Chen X 2021 Chin. Phys. B 30 097403Google Scholar

    [89]

    Kane C L, Mele E J 2005 Phys. Rev. Lett. 95 146802Google Scholar

    [90]

    Xiao D, Chang MC, Niu Q 2010 Rev. Mod. Phys. 82 1959Google Scholar

    [91]

    You J S, Fang S, Xu S Y, Kaxiras E, Low T 2018 Phys. Rev. B 98 121109Google Scholar

    [92]

    Son J, Kim K H, Ahn Y H, Lee H W, Lee J 2019 Phys. Rev. Lett. 123 036806Google Scholar

    [93]

    Fu L, Kane C L 2007 Phys. Rev. B 76 045302Google Scholar

    [94]

    Murakami S, Kuga S I 2008 Phys. Rev. B 78 165313Google Scholar

    [95]

    Zhao C, Hu M, Qin J, Xia B, Liu C, Wang S, Guan D, Li Y, Zheng H, Liu J, Jia J 2020 Phys. Rev. Lett. 125 046801Google Scholar

    [96]

    Zhang P, Noguchi R, Kuroda K, Lin C, Kawaguchi K, Yaji K, Harasawa A, Lippmaa M, Nie S, Weng H, Kandyba V, Giampietri A, Barinov A, Li Q, Gu G D, Shin S, Kondo T 2021 Nat. Commun. 12 406Google Scholar

    [97]

    Flötotto D, Bai Y, Chan Y H, Chen P, Wang X, Rossi P, Xu C Z, Zhang C, Hlevyack J A, Denlinger J D, Hong H, Chou M Y, Mittemeijer E J, Eckstein J N, Chiang T C 2018 Nano Lett. 18 5628Google Scholar

    [98]

    Liu J, Zhou Y, Yepez Rodriguez S, Delmont M A, Welser R A, Ho T, Sirica N, McClure K, Vilmercati P, Ziller J W, Mannella N, Sanchez-Yamagishi J D, Pettes M T, Wu R, Jauregui L A 2024 Nat. Commun. 15 332Google Scholar

    [99]

    Hammock M L, Chortos A, Tee B C K, Tok J B H, Bao Z 2013 Adv. Mater. 25 5997Google Scholar

    [100]

    Chortos A, Liu J, Bao Z 2016 Nat. Mater. 15 937Google Scholar

    [101]

    Ma Y, Zhang Y, Cai S, Han Z, Liu X, Wang F, Cao Y, Wang Z, Li H, Chen Y, Feng X 2020 Adv. Mater. 32 1902062Google Scholar

    [102]

    Qi J, Lan Y W, Stieg A Z, Chen J H, Zhong Y L, Li L J, Chen C D, Zhang Y, Wang K L 2015 Nat. Commun. 6 7430Google Scholar

    [103]

    Zhao J, Wang G, Yang R, Lu X, Cheng M, He C, Xie G, Meng J, Shi D, Zhang G 2015 ACS Nano 9 1622Google Scholar

    [104]

    Feng W, Zheng W, Gao F, Chen X, Liu G, Hasan T, Cao W, Hu P 2016 Chem. Mater. 28 4278Google Scholar

    [105]

    Zhang Z, Li L, Horng J, Wang N Z, Yang F, Yu Y, Zhang Y, Chen G, Watanabe K, Taniguchi T, Chen X H, Wang F, Zhang Y 2017 Nano Lett. 17 6097Google Scholar

    [106]

    Yan W, Fuh H R, Lü Y, Chen K Q, Tsai T Y, Wu Y R, Shieh T H, Hung K M, Li J, Zhang D, Ó Coileáin C, Arora S K, Wang Z, Jiang Z, Chang C R, Wu H C 2021 Nat. Commun. 12 2018Google Scholar

    [107]

    Grabovskij G J, Peichl T, Lisenfeld J, Weiss G, Ustinov A V 2012 Science 338 232Google Scholar

    [108]

    Sun Y, Lin T, Lei N, Chen X, Kang W, Zhao Z, Wei D, Chen C, Pang S, Hu L, Yang L, Dong E, Zhao L, Liu L, Yuan Z, Ullrich A, Back C H, Zhang J, Pan D, Zhao J, Feng M, Fert A, Zhao W 2023 Nat. Commun. 14 3434Google Scholar

    [109]

    Lei N, Devolder T, Agnus G, Aubert P, Daniel L, Kim J V, Zhao W, Trypiniotis T, Cowburn R P, Chappert C, Ravelosona D, Lecoeur P 2013 Nat. Commun. 4 1378Google Scholar

    [110]

    D’Souza N, Biswas A, Ahmad H, Fashami M S, Al-Rashid M M, Sampath V, Bhattacharya D, Abeed M A, Atulasimha J, Bandyopadhyay S 2018 Nanotechnology 29 442001Google Scholar

    [111]

    Yan H, Feng Z, Shang S, Wang X, Hu Z, Wang J, Zhu Z, Wang H, Chen Z, Hua H, Lu W, Wang J, Qin P, Guo H, Zhou X, Leng Z, Liu Z, Jiang C, Coey M, Liu Z 2019 Nat. Nanotechnol. 14 131Google Scholar

    [112]

    Gusev N S, Sadovnikov A V, Nikitov S A, Sapozhnikov M V, Udalov O G 2020 Phys. Rev. Lett. 124 157202Google Scholar

    [113]

    Žutić I, Fabian J, Das Sarma S 2004 Rev. Mod. Phys. 76 323Google Scholar

    [114]

    Borders W A, Pervaiz A Z, Fukami S, Camsari K Y, Ohno H, Datta S 2019 Nature 573 390Google Scholar

    [115]

    Safranski C, Kaiser J, Trouilloud P, Hashemi P, Hu G, Sun J Z 2021 Nano Lett. 21 2040Google Scholar

    [116]

    Camsari K Y, Faria R, Sutton B M, Datta S 2017 Phys. Rev. X 7 031014Google Scholar

    [117]

    Camsari K Y, Sutton B M, Datta S 2019 Appl. Phys. Rev. 6 011305Google Scholar

    [118]

    Kaiser J, Datta S 2021 Appl. Phys. Lett. 119 150503Google Scholar

    [119]

    Liu Z, Amani M, Najmaei S, Xu Q, Zou X, Zhou W, Yu T, Qiu C, Birdwell A G, Crowne F J, Vajtai R, Yakobson B I, Xia Z, Dubey M, Ajayan P M, Lou J 2014 Nat. Commun. 5 5246Google Scholar

    [120]

    Li Z, Lü Y, Ren L, Li J, Kong L, Zeng Y, Tao Q, Wu R, Ma H, Zhao B, Wang D, Dang W, Chen K, Liao L, Duan X, Duan X, Liu Y 2020 Nat. Commun. 11 1151Google Scholar

  • [1] Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long. Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb). Acta Physica Sinica, 2024, 73(13): 137101. doi: 10.7498/aps.73.20240434
    [2] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [3] Wang Ya-Xun, Guo Di, Li Jian-Gao, Zhang Dong-Bo. Engineering of properties of low-dimensional materials via inhomogeneous strain. Acta Physica Sinica, 2022, 71(12): 127307. doi: 10.7498/aps.71.20220085
    [4] Huang Jia-Bei, Lian Fu-Zhuo, Wang Zhi-Yuan, Sun Shi-Tao, Li Ming, Zhang Di, Cai Xiao-Fan, Ma Guo-Dong, Mai Zhi-Hong, Andy Shen, Wang Lei, Yu Ge-Liang. Two-dimensional van der Waals: Characterization and manipulation of superconductivity. Acta Physica Sinica, 2022, 71(18): 187401. doi: 10.7498/aps.71.20220638
    [5] Jin Xin, Tao Lei, Zhang Yu-Yang, Pan Jin-Bo, Du Shi-Xuan. Research progress of novel properties in several van der Waals ferroelectric materials. Acta Physica Sinica, 2022, 71(12): 127305. doi: 10.7498/aps.71.20220349
    [6] Yao Wen-Qian, Sun Jian-Zhe, Chen Jian-Yi, Guo Yun-Long, Wu Bin, Liu Yun-Qi. Controllable preparation and photoelectric applications of two-dimensional in-plane and van der Waals heterostructures. Acta Physica Sinica, 2021, 70(2): 027901. doi: 10.7498/aps.70.20201419
    [7] Zhang Fang, Jia Li-Qun, Sun Xian-Ting, Dai Xian-Qi, Huang Qi-Xiang, Li Wei. Tuning Schottky barrier in graphene/InSe van der Waals heterostructures by electric field. Acta Physica Sinica, 2020, 69(15): 157302. doi: 10.7498/aps.69.20191987
    [8] Chen Xiao-Hui, Tan Bo-Zhong, Xue Tao, Ma Yun-Can, Jin Sai, Li Zhi-Jun, Xin Yue-Feng, Li Xiao-Ya, Li Jun. In situ observation of phase transition in polycrystalline under high-pressure high-strain-rate shock compression by X-ray diffraction. Acta Physica Sinica, 2020, 69(24): 246201. doi: 10.7498/aps.69.20200929
    [9] Wang Bo, Fang Yu-Long, Yin Jia-Yun, Liu Qing-Bin, Zhang Zhi-Rong, Guo Yan-Min, Li Jia, Lu Wei-Li, Feng Zhi-Hong. Effect of surface pretreatment on GaN van der Waals epitaxy growth on graphene. Acta Physica Sinica, 2017, 66(24): 248101. doi: 10.7498/aps.66.248101
    [10] Pei Li, Wu Liang-Ying, Wang Jian-Shuai, Li Jing, Ning Ti-Gang. Phase shift chirped fiber Bragg grating based distributed strain and position sensing. Acta Physica Sinica, 2017, 66(7): 070702. doi: 10.7498/aps.66.070702
    [11] Wang Jiang-Jing, Shao Rui-Wen, Deng Qing-Song, Zheng Kun. Study on electrical transport properties of strained Si nanowires by in situ transmission electron microscope. Acta Physica Sinica, 2014, 63(11): 117303. doi: 10.7498/aps.63.117303
    [12] Liu Yu-Min, Yu Zhong-Yuan, Ren Xiao-Min. Effects of the thickness of spacing layer and capping layer on the strain distribution and wavelength emission of InAs/GaAs quantum dot. Acta Physica Sinica, 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [13] Yao Fei, Xue Chun-Lai, Cheng Bu-Wen, Wang Qi-Ming. Band gap Narrowing in heavily B doped Si1-xGex strained layers. Acta Physica Sinica, 2007, 56(11): 6654-6659. doi: 10.7498/aps.56.6654
    [14] Pan Jiao-Qing, Zhao Qian, Zhu Hong-Liang, Zhao Ling-Juan, Ding Ying, Wang Bao-Jun, Zhou Fan, Wang Lu-Feng, Wang Wei. Material growth and device fabrication of highly strained InGaAs/InGaAsP long wavelength distributed feedback lasers. Acta Physica Sinica, 2006, 55(10): 5216-5220. doi: 10.7498/aps.55.5216
    [15] Luo Shao-Jun, Guo Wen-Gang, Yang Xiu-Feng, Lü Fu-Yun, Lü Chao. A novel fiber strain sensor based on laser’s transient regime. Acta Physica Sinica, 2006, 55(4): 1889-1893. doi: 10.7498/aps.55.1889
    [16] Cheng Bu-Wen, Yao Fei, Xue Chun-Lai, Zhang Jian-Guo, Li Chuan-Bo, Mao Rong-Wei, Zuo Yu-Hua, Luo Li-Ping, Wang Qi-Ming. A method to estimate the strain state of SiGe/Si by measuring the bandgap. Acta Physica Sinica, 2005, 54(9): 4350-4353. doi: 10.7498/aps.54.4350
    [17] Zhou Wang-Min, Wang Chong-Yu. The strain distribution of lowdimensional semiconductor materials. Acta Physica Sinica, 2004, 53(12): 4308-4313. doi: 10.7498/aps.53.4308
    [18] Jiang Jian, Rao Yun-Jiang, Zhou Chang-Xue, Zhu Tao. Frequency-multiplexed fiber-optic Fizeau strain sensor system based on optical amplification. Acta Physica Sinica, 2004, 53(7): 2221-2225. doi: 10.7498/aps.53.2221
    [19] Wang Yi-Ping, Rao Yun-Jiang, Ran Zeng-Ling, Zhu Tao. Unique characteristics of long-period fibre gratings fabricated by high-freque ncy CO2 laser pulses. Acta Physica Sinica, 2003, 52(6): 1432-1437. doi: 10.7498/aps.52.1432
    [20] SUN CHIA-CHUNG, KIANG TUNG-CHEN. THE PROBLEM OF THE VAN DER WAALS FORCES FOR A SYSTEM OF ASYMMETRIC TOP MOLECULES. Acta Physica Sinica, 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
Metrics
  • Abstract views:  1871
  • PDF Downloads:  108
  • Cited By: 0
Publishing process
  • Received Date:  12 March 2024
  • Accepted Date:  30 March 2024
  • Available Online:  09 April 2024
  • Published Online:  05 June 2024

/

返回文章
返回
Baidu
map