-
探索低维材料的新奇物性是当前凝聚态物理和材料科学基础研究的一个重要前沿. 应变是调控低维材料物性的一个重要手段. 相比于块体材料, 低维材料通常具有良好的力学柔韧性, 并表现出敏锐的结构-电子响应关系, 因此可以通过结构变形对材料电子性质进行有效调控. 本文主要目的是介绍二维材料中通过非均匀应变获得新奇物性的研究进展. 主要讨论两个效应, 即赝磁场效应和挠曲电效应. 具体来说, 通过解析理论、实验进展、计算模拟以及围绕这些效应的应用等方面介绍相关研究进展. 从计算模拟的角度看, 由于非均匀应变破坏了晶体的平移对称性, 基于周期性边界条件的量子力学计算方法如第一性原理不再适用. 本文将介绍一个专门用来模拟非均匀应变的原子级计算方法, 即广义布洛赫方法, 并简要介绍该方法的一些具体应用.
Low-dimensional material represents a special structure of matter. The exploring of its novel properties is an important frontier subject in the fundamental research of condensed matter physics and material science. Owing to its small length scale in one or two dimensions, low-dimensional materials are usually flexible in structure. This feature together with the prompt electronic response to structural deformations enable us to modulate the material properties via a strain way. The main purpose of this paper is to introduce the recent research progress of obtaining novel physical properties by inhomogeneously straining two-dimensional materials, with focusing on two effects, i.e., pseudomagnetic field effect and the flexoelectric effect. Of course, the influence of inhomogeneous strains on electrons is not limited to these two effects. Fundamentally, an inhomogeneous deformation breaks the symmetry of crystalline structure. This may serve as a start point to delineate the structural-properties relation. First, the symmetry breaking can eliminate the degeneracy of energy levels. Second, the symmetry breaking will also cause the heterogeneity of electronic and phonon properties in different parts of the material. In the paper, we also introduce a special method named the generalized Bloch theorem that is suitable for dealing with the inhomogeneous strain patterns at an atomistic level. From the perspective of atomistic simulation, due to the breaking of translational symmetry, the standard quantum mechanical calculations encounter fundamental difficulties in dealing with an inhomogeneous strain, e.g., bending and torsion. The generalized Bloch method overcomes such an obstacle by considering rotational and/or screw symmetries given by bending and/or torsion in solving the eigenvalue problem. As such, quantum mechanical calculations can be still conducted with a relatively small number of atoms. -
Keywords:
- two-dimensional materials /
- strain engineering /
- pseudomagnetic field /
- flexoelectricity /
- generalized Bloch theorem
[1] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim1 A K 2007 Science 315 1379
Google Scholar
[2] Zhao L Y, He R, Rim K T, et al. 2011 Science 333 999
Google Scholar
[3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
Google Scholar
[4] Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193
Google Scholar
[5] Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R, Sasaki T 2003 Nature 422 53
Google Scholar
[6] Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932
Google Scholar
[7] Pacilé D, Meyer J C, Girit Ç Ö, Zettl A 2008 Appl. Phys. Lett. 92 133107
Google Scholar
[8] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y H, Yu X, Duan X D, Ji X D, Duan W, Xiang f 2021 Nat. Mater. 20 818
Google Scholar
[9] Geim A K, Grigorieva I V 2013 Nature 499 419
Google Scholar
[10] Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810
Google Scholar
[11] Tong Q J, Yu H Y, Zhu Q Z, Wang Y, Xu X D, Yao W 2017 Nat. Phys. 13 356
Google Scholar
[12] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80
Google Scholar
[13] Zhao X J, Yang Y, Zhang D B, Wei S H 2020 Phys. Rev. Lett. 124 086401
Google Scholar
[14] Liu C S, Yan X, Song X F, Ding S J, Zhang D W, Zhou P 2018 Nat. Nanotechnol. 13 404
Google Scholar
[15] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S Q, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X F, Zhang X, Lindenberg A M 2020 Nat. Phys. 16 1028
Google Scholar
[16] Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74
Google Scholar
[17] Nicholas R G, Christopher M, Michael S 2020 Oxford Open Mater. Sci. 1 itaa002
Google Scholar
[18] San-Jose P, González J, Guinea F 2011 Phys. Rev. Lett. 106 045502
Google Scholar
[19] Wang Z L 2007 MRS Bull. 32 109
Google Scholar
[20] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706
Google Scholar
[21] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[22] Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
Google Scholar
[23] Maiti A 2003 Nat. Mater. 2 440
Google Scholar
[24] Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101
Google Scholar
[25] Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250
Google Scholar
[26] Fu X W, Liao Z M, Liu R, Xu J, Yu D 2013 ACS Nano 7 8891
Google Scholar
[27] Cong L, Yuan Z, Bai Z, Wang X, Zhao W, Gao X, Hu X, Liu P, Guo W, Li Q, Fan S, Jiang K 2021 Sci. Adv. 7 2358
Google Scholar
[28] Xie S, Tu L, Han Y, Huang L, Kang K, Lao K U, Poddar P, Park C, Muller D A, DiStasio J A R, Park J 2018 Science 359 1131
Google Scholar
[29] Lewis R B, Corfdir P, Kupers H, Flissikowski T, Brandt O, Geelhaar L 2018 Nano Lett. 18 2343
Google Scholar
[30] Mañes J L 2007 Phys. Rev. B 76 045430
Google Scholar
[31] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60
Google Scholar
[32] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C, Zettl A 2007 Solid State Commun. 143 101
Google Scholar
[33] Fasolino A, Los J H, Katsnelson M I. 2007 Nat. Mater. 6 858
Google Scholar
[34] Nelson D R 2002 Defects and Geometry in Condensed Matter Physics (Cambridge: Cambridge University Press) pp12–17
[35] Stolyarova E, Rim K T, Ryu S, Maultzsch J, Kim P, Brus L E, Heinz T F, Hybertsen M S, Flynn G W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9209
Google Scholar
[36] Bai K K, Zhou Y, Zheng H, Meng L, Peng H, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102
Google Scholar
[37] Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (Singapore: World scientific) pp773–893
[38] Sadoc J F 1990 Geometry in Condensed Matter Physics (Vol. 9) (Singapore: World Scientific) pp41–50
[39] Katanaev M O, Volovich I V 1992 Ann. Phys. 216 1
Google Scholar
[40] Sasaki K, Kawazoe Y, Saito R 2005 Prog. Theor. Phys. 113 463
Google Scholar
[41] Morpurgo A F, Guinea F 2006 Phys. Rev. Lett. 97 196804
Google Scholar
[42] Georgi A, Nemes-Incze P, Carrillo-Bastos R, et al. 2017 Nano Lett. 17 2240
Google Scholar
[43] Kim J, Hong X, Jin C, Shi S, Chang C S, Chiu M, Li L, Wang F 2014 Science 346 1205
Google Scholar
[44] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823
Google Scholar
[45] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
Google Scholar
[46] Low T, Guinea F 2010 Nano Lett. 10 3551
Google Scholar
[47] Abedpour N, Asgari R, Guinea F 2011 Phys. Rev. B 84 115437
Google Scholar
[48] Zhu S, Li T 2014 J. Appl. Mech. 81 061008
Google Scholar
[49] Yamamoto M, Pierre-Louis O, Huang J, Fuhrer M S, Einstein T L, Cullen W G 2012 Phys. Rev. X 2 041018
Google Scholar
[50] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544
Google Scholar
[51] Zhu S, Stroscio J A, Li T 2015 Phys. Rev. Lett. 115 245501
Google Scholar
[52] Neek-Amal M, Covaci L, Peeters F M 2012 Phys. Rev. B 86 041405
Google Scholar
[53] Qi Z, Kitt A L, Park H S, Pereira V M, Canpbell D K, Castro Neto A H 2014 Phys. Rev. B 90 125419
Google Scholar
[54] Jiang Y, Mao J, Duan J, Lai X, Watanabe K, Taniguchi T, Andrei E Y 2017 Nano Lett. 17 2839
Google Scholar
[55] Hsu C C, Teague M L, Wang J Q, Yeh N C 2020 Sci. Adv. 6 9488
Google Scholar
[56] Kun P, Kukucska G, Dobrik G, Koltai J, Kürti J, Biró L P 2019 npj 2D Mater. Appl. 3 11
Google Scholar
[57] 倪光炯, 陈苏卿 2003 高等量子力学 (上海: 复旦大学出版社) 第228—229页
Ni G J, Chen S Q 2003 Advanced Quantum Mechanics (Shanghai: Fudan University Press) pp228–229 (in Chinese)
[58] 张礼, 葛墨林 2000 量子力学的前沿问题 (北京: 清华大学出版社) 第53—57页
Zhan L, Ge M L 2000 Frontier Problems of Quantum Mechanics (Beijing: Tsinghua Univerdity press) pp53–57 (in Chinese)
[59] Aharonov Y, Bohm D 1959 Phys. Rev. 115 485
Google Scholar
[60] Batelaan H, Tonomura A 2009 Phys. Today 62 38
Google Scholar
[61] 马丽, 谭振兵, 谭长玲, 杨海方, 刘广同, 杨昌黎, 吕力 2011 中国科学 41 1249
Google Scholar
Ma L, Tan Z B, Tan C L, Yan H F, Liu G T, Yang C L, Lǚ L 2011 Sci. China 41 1249
Google Scholar
[62] Cano A, Paul I 2009 Phys. Rev. B 80 153401
Google Scholar
[63] de Juna F, Cortijo A, Vozmediano M H, Cano A 2011 Nat. Phys. 7 810
Google Scholar
[64] Mao J, Milovanović S P, Anđelković M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y, Andrei E Y 2020 Nature 584 215
Google Scholar
[65] Kopnin N B, Heikkilä T T, Volovik G E 2011 Phys. Rev. B 83 220503
Google Scholar
[66] Kauppila V J, Aikebaier F, Heikkilä T T 2016 Phys. Rev. B 93 214505
Google Scholar
[67] Tang E, Fu L 2014 Nat. Phys. 10 964
Google Scholar
[68] Naumov I, Bratkovsky A M, Ranjan V 2009 Phys. Rev. Lett. 102 217601
Google Scholar
[69] Hong J, Vanderbilt D 2013 Phys. Rev. B 88 174107
Google Scholar
[70] Wang B, Gu Y, Zhang S, Chen L Q 2019 Prog. Mater. Sci. 106 100570
Google Scholar
[71] Ahmadpoor F, Sharma P 2015 Nanoscale 7 16555
Google Scholar
[72] Yang M M, Kim D J, Alexe M 2018 Science 360 904
Google Scholar
[73] Kumar M, Lim J, Park J Y, Seo H 2021 Small Methods 5 2100342
Google Scholar
[74] Jiang X, Huang W, Zhang S 2013 Nano Energy 2 1079
Google Scholar
[75] Kogan Sh M 1964 Sov. Phys. Solid State 5 2069
[76] Meyer R B 1969 Phys. Rev. Lett. 22 918
Google Scholar
[77] Zubko P, Catalan G, Tagantsev A K 2013 Annu. Rev. Mater. Res. 43 387
Google Scholar
[78] Wen X, Li D, Tan K, Deng Q, Shen S 2019 Phys. Rev. Lett. 122 148001
Google Scholar
[79] Chu B, Salem D R 2012 Appl. Phys. Lett. 101 103905
Google Scholar
[80] Yudin P V, Tagantsev A K 2013 Nanotechnology 24 432001
Google Scholar
[81] Nguyen T D, Mao Sh, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater. 25 946
Google Scholar
[82] 舒龙龙, 梁任宏, 喻彦卓, 黄文彬, 魏晓勇, 李飞, 江小宁, 姚熹, 王雨 2018 现代技术陶瓷 39 223
Google Scholar
Shu L L, Liang R H, Yu Y Z, Huang W B, Wei X Y, Li F, Jiang X N, Yao X, Wang Y 2018 Adv. Ceram. 39 223
Google Scholar
[83] Tagantsev A K 1986 Phys. Rev. B 34 5883
Google Scholar
[84] Tagantsev A K 1991 Phase Transitions 35 119
Google Scholar
[85] Resta R 2010 Phys. Rev. Lett. 105 127601
Google Scholar
[86] Resta R 2010 Phys. Condens. Matter 22 123201
Google Scholar
[87] Tagantsev A K 1985 Zh. Eksp. Teor. Fiz. 88 2108
[88] Zubko P, Catalan G, Buckley A, Welche P R L, Scott J F 2007 Phys. Rev. Lett. 99 167601
Google Scholar
[89] Stengel M 2013 Phys. Rev. B 88 174106
Google Scholar
[90] Zhang X, Pan Q, Tian D, Zhou W, Chen P, Zhang H, Chu B 2018 Phys. Rev. Lett. 121 057602
Google Scholar
[91] Maranganti R, Sharma P 2009 Phys. Rev. B 80 054109
Google Scholar
[92] Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201
Google Scholar
[93] Hong J, Vanderbilt D 2011 Phys. Rev. B 84 180101
Google Scholar
[94] Bennett D 2021 Electron. Struct. 3 015001
Google Scholar
[95] Codony D, Arias I, Suryanarayana P 2021 Phys. Rev. Mater. 5 L030801
Google Scholar
[96] Springolo M, Royo M, Stengel M 2021 Phys. Rev. Lett. 127 216801
Google Scholar
[97] Kalinin S V, Meunier V 2008 Phys. Rev. B 77 033403
Google Scholar
[98] Zhuang X, He B, Javvaji B, Park H S 2019 Phys. Rev. B 99 054105
Google Scholar
[99] Kumar S, Codony D, Arias I, Suryanarayana P 2021 Nanoscale 13 1600
Google Scholar
[100] Abdollahi A, Vásquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502
Google Scholar
[101] McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E, Pasupathy A N 2020 Nat. Nanotechnol. 15 580
Google Scholar
[102] Li Y, Wang X, Tang D, Wang X, Watanabe K, Taniguchi T, Gamelin D R, Cobden D H, Yankowitz M, Xu X, Li J 2021 Adv. Mater. 33 2105879
Google Scholar
[103] Kwon S R, Huang W B, Zhang S J, Yuan F G, Jiang X N 2013 Smart Mater. Struct. 22 115017
Google Scholar
[104] Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233
Google Scholar
[105] Brody P S, Crowne F 1975 J. Electron. Mater. 4 955
Google Scholar
[106] Fridkin V M 2001 Crystallogr. Rep. 46 654
Google Scholar
[107] Spanier J E, Fridkin V M, Rappe A M, Akbashev A R, Polemi A, Qi Y, Gu Z, Young S M, Hawley C J, Imbrenda D, Xiao G, Bennett-Jackson A L, Johnson C L 2016 Nat. Photonics 10 611
Google Scholar
[108] Jiang J, Chen Z, Hu Y, Xiang Y, Zhang L, Wang Y, Wang G C, Shi J 2021 Nat. Nanotechnol. 16 894
Google Scholar
[109] Artyukhov V I, Gupta S, Kutana A, Yakobson B I 2020 Nano Lett. 20 3240
Google Scholar
[110] Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331
Google Scholar
[111] Wang K F, Wang B L 2016 Compos. Struct. 153 253
Google Scholar
[112] Wang K F, Wang B L 2017 Int. J. Eng. Sci. 116 88
Google Scholar
[113] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[114] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter 21 395502
Google Scholar
[115] Porezag D, Frauenheim Th, Köhler Th, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947
Google Scholar
[116] Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260
Google Scholar
[117] Locatelli A, Wang C, Africh C, Stojić N, Menteş T O, Comelli G, Binggeli N 2013 ACS Nano 7 6955
Google Scholar
[118] Yue L, Seifert G, Chang K, Zhang D B 2017 Phys. Rev. B 96 201403
Google Scholar
[119] White C T, Robertson D H, Mintmire J W 1993 Phys. Rev. B 47 5485
Google Scholar
[120] Popov V N 2004 New J. Phys. 6 17
Google Scholar
[121] Allen P B 2007 Nano Lett. 7 1220
Google Scholar
[122] 张东波, 魏苏淮 2021 科学通报 66 674
Google Scholar
Zhang D B, Wei S H 2021 Chin. Sci. Bull. 66 674
Google Scholar
[123] Zhang D B, Wei S H 2017 npj Comput. Mater. 3 32
Google Scholar
[124] Rurali R, Hernández E 2003 Comput. Mater. Sci. 28 85
Google Scholar
[125] Aradi B, Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678
Google Scholar
[126] Zhang D B, Seifert G, Chang K 2014 Phys. Rev. Lett. 112 096805
Google Scholar
[127] Guinea F, Geim A K, Katsnelson M I, Novoselov K S 2010 Phys. Rev. B 81 035408
Google Scholar
[128] Suzuura H, Ando T 2002 Phys. Rev. B 65 235412
Google Scholar
[129] Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153
Google Scholar
[130] Fang C M, de Wijs G A, de Groot R A 2002 J. Appl. Phys. 91 8340
Google Scholar
[131] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[132] Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668
Google Scholar
[133] Zhang D, Zhang D B, Yang F, Lin H Q, Xu H, Chang K 2015 2D Mater. 2 041001
Google Scholar
[134] Pruneda J M 2010 Phys. Rev. B 81 161409
Google Scholar
[135] Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889
[136] Levendorf M, Kim C, Brown L, Huang P, Havener R W, Muller D A, Park J 2012 Nature 488 627
Google Scholar
[137] Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869
Google Scholar
[138] Sutter P, Huang Y, Sutter E 2014 Nano Lett. 14 4846
Google Scholar
[139] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119
Google Scholar
[140] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163
Google Scholar
[141] Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Zhang Y, Liu Z 2014 Nano Lett. 14 6342
Google Scholar
[142] Drost R, Uppstu A, Schulz F, Hamalainen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128
Google Scholar
[143] Kim S W, Kim H J, Choi J H, Scheicher R H, Cho J H 2015 Phys. Rev. B 92 035443
Google Scholar
[144] Zeng J, Chen W, Cui P, Zhang D B, Zhang Z 2016 Phys. Rev. B 94 235425
Google Scholar
[145] Liu Z, Fu X, Zhang D B 2020 Nanoscale 12 19083
Google Scholar
-
图 5 研究材料的结构 (a)石墨烯同素异形体; (b)氮化物XN, X = B, Al, Ga; (c) IV族元素X, X = Si, Ge, Sn的石墨烯类似物; (d)过渡金属二硫族化合物XS2, X = Cr, Mo, W. (a)—(c)中, h为屈曲高度, (d)中, h1和h2为层内距离[98]
Fig. 5. Structures of the studied materials: (a) Graphene allotropes; (b) nitrides XN, X = B, Al, Ga; (c) graphene analogues of group-IV elements X, X = Si, Ge, Sn; (d) transition metal dichalcogenides XS2, X = Cr, Mo, W. For (a)–(c), h refers to the buckling height, while in (d), h1 and h2 refer to intralayer distances[98].
-
[1] Novoselov K S, Jiang Z, Zhang Y, Morozov S V, Stormer H L, Zeitler U, Maan J C, Boebinger G S, Kim P, Geim1 A K 2007 Science 315 1379
Google Scholar
[2] Zhao L Y, He R, Rim K T, et al. 2011 Science 333 999
Google Scholar
[3] Xu M, Liang T, Shi M, Chen H 2013 Chem. Rev. 113 3766
Google Scholar
[4] Wilson J A, Yoffe A D 1969 Adv. Phys. 18 193
Google Scholar
[5] Takada K, Sakurai H, Takayama-Muromachi E, Izumi F, Dilanian R, Sasaki T 2003 Nature 422 53
Google Scholar
[6] Kubota Y, Watanabe K, Tsuda O, Taniguchi T 2007 Science 317 932
Google Scholar
[7] Pacilé D, Meyer J C, Girit Ç Ö, Zettl A 2008 Appl. Phys. Lett. 92 133107
Google Scholar
[8] Li B, Wan Z, Wang C, Chen P, Huang B, Cheng X, Qian Q, Li J, Zhang Z W, Sun G Z, Zhao B, Ma H, Wu R X, Wei Z M, Liu Y, Liao L, Ye Y H, Yu X, Duan X D, Ji X D, Duan W, Xiang f 2021 Nat. Mater. 20 818
Google Scholar
[9] Geim A K, Grigorieva I V 2013 Nature 499 419
Google Scholar
[10] Guo H W, Hu Z, Liu Z B, Tian J G 2021 Adv. Funct. Mater. 31 2007810
Google Scholar
[11] Tong Q J, Yu H Y, Zhu Q Z, Wang Y, Xu X D, Yao W 2017 Nat. Phys. 13 356
Google Scholar
[12] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez-Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo-Herrero P 2018 Nature 556 80
Google Scholar
[13] Zhao X J, Yang Y, Zhang D B, Wei S H 2020 Phys. Rev. Lett. 124 086401
Google Scholar
[14] Liu C S, Yan X, Song X F, Ding S J, Zhang D W, Zhou P 2018 Nat. Nanotechnol. 13 404
Google Scholar
[15] Xiao J, Wang Y, Wang H, Pemmaraju C D, Wang S Q, Muscher P, Sie E J, Nyby C M, Devereaux T P, Qian X F, Zhang X, Lindenberg A M 2020 Nat. Phys. 16 1028
Google Scholar
[16] Shulaker M M, Hills G, Park R S, Howe R T, Saraswat K, Wong H S P, Mitra S 2017 Nature 547 74
Google Scholar
[17] Nicholas R G, Christopher M, Michael S 2020 Oxford Open Mater. Sci. 1 itaa002
Google Scholar
[18] San-Jose P, González J, Guinea F 2011 Phys. Rev. Lett. 106 045502
Google Scholar
[19] Wang Z L 2007 MRS Bull. 32 109
Google Scholar
[20] Kim K S, Zhao Y, Jang H, Lee S Y, Kim J M, Kim K S, Ahn J H, Kim P, Choi J Y, Hong B H 2009 Nature 457 706
Google Scholar
[21] Lee C, Wei X, Kysar J W, Hone J 2008 Science 321 385
Google Scholar
[22] Pereira V M, Castro Neto A H 2009 Phys. Rev. Lett. 103 046801
Google Scholar
[23] Maiti A 2003 Nat. Mater. 2 440
Google Scholar
[24] Wang G, Dai Z, Wang Y, Tan P, Liu L, Xu Z, Wei Y, Huang R, Zhang Z 2017 Phys. Rev. Lett. 119 036101
Google Scholar
[25] Liu X, Sachan A K, Howell S T, Conde-Rubio A, Knoll A W, Boero G, Zenobi R, Brugger J 2020 Nano Lett. 20 8250
Google Scholar
[26] Fu X W, Liao Z M, Liu R, Xu J, Yu D 2013 ACS Nano 7 8891
Google Scholar
[27] Cong L, Yuan Z, Bai Z, Wang X, Zhao W, Gao X, Hu X, Liu P, Guo W, Li Q, Fan S, Jiang K 2021 Sci. Adv. 7 2358
Google Scholar
[28] Xie S, Tu L, Han Y, Huang L, Kang K, Lao K U, Poddar P, Park C, Muller D A, DiStasio J A R, Park J 2018 Science 359 1131
Google Scholar
[29] Lewis R B, Corfdir P, Kupers H, Flissikowski T, Brandt O, Geelhaar L 2018 Nano Lett. 18 2343
Google Scholar
[30] Mañes J L 2007 Phys. Rev. B 76 045430
Google Scholar
[31] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Booth T J, Roth S 2007 Nature 446 60
Google Scholar
[32] Meyer J C, Geim A K, Katsnelson M I, Novoselov K S, Obergfell D, Roth S, Girit C, Zettl A 2007 Solid State Commun. 143 101
Google Scholar
[33] Fasolino A, Los J H, Katsnelson M I. 2007 Nat. Mater. 6 858
Google Scholar
[34] Nelson D R 2002 Defects and Geometry in Condensed Matter Physics (Cambridge: Cambridge University Press) pp12–17
[35] Stolyarova E, Rim K T, Ryu S, Maultzsch J, Kim P, Brus L E, Heinz T F, Hybertsen M S, Flynn G W 2007 Proc. Natl. Acad. Sci. U. S. A. 104 9209
Google Scholar
[36] Bai K K, Zhou Y, Zheng H, Meng L, Peng H, Liu Z F, Nie J C, He L 2014 Phys. Rev. Lett. 113 086102
Google Scholar
[37] Kleinert H 2009 Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets (Singapore: World scientific) pp773–893
[38] Sadoc J F 1990 Geometry in Condensed Matter Physics (Vol. 9) (Singapore: World Scientific) pp41–50
[39] Katanaev M O, Volovich I V 1992 Ann. Phys. 216 1
Google Scholar
[40] Sasaki K, Kawazoe Y, Saito R 2005 Prog. Theor. Phys. 113 463
Google Scholar
[41] Morpurgo A F, Guinea F 2006 Phys. Rev. Lett. 97 196804
Google Scholar
[42] Georgi A, Nemes-Incze P, Carrillo-Bastos R, et al. 2017 Nano Lett. 17 2240
Google Scholar
[43] Kim J, Hong X, Jin C, Shi S, Chang C S, Chiu M, Li L, Wang F 2014 Science 346 1205
Google Scholar
[44] Seyler K L, Zhong D, Huang B, Linpeng X, Wilson N P, Taniguchi T, Watanabe K, Yao W, Xiao D, McGuire M A, Fu K C, Xu X 2018 Nano Lett. 18 3823
Google Scholar
[45] Guinea F, Katsnelson M I, Geim A K 2010 Nat. Phys. 6 30
Google Scholar
[46] Low T, Guinea F 2010 Nano Lett. 10 3551
Google Scholar
[47] Abedpour N, Asgari R, Guinea F 2011 Phys. Rev. B 84 115437
Google Scholar
[48] Zhu S, Li T 2014 J. Appl. Mech. 81 061008
Google Scholar
[49] Yamamoto M, Pierre-Louis O, Huang J, Fuhrer M S, Einstein T L, Cullen W G 2012 Phys. Rev. X 2 041018
Google Scholar
[50] Levy N, Burke S A, Meaker K L, Panlasigui M, Zettl A, Guinea F, Castro Neto A H, Crommie M F 2010 Science 329 544
Google Scholar
[51] Zhu S, Stroscio J A, Li T 2015 Phys. Rev. Lett. 115 245501
Google Scholar
[52] Neek-Amal M, Covaci L, Peeters F M 2012 Phys. Rev. B 86 041405
Google Scholar
[53] Qi Z, Kitt A L, Park H S, Pereira V M, Canpbell D K, Castro Neto A H 2014 Phys. Rev. B 90 125419
Google Scholar
[54] Jiang Y, Mao J, Duan J, Lai X, Watanabe K, Taniguchi T, Andrei E Y 2017 Nano Lett. 17 2839
Google Scholar
[55] Hsu C C, Teague M L, Wang J Q, Yeh N C 2020 Sci. Adv. 6 9488
Google Scholar
[56] Kun P, Kukucska G, Dobrik G, Koltai J, Kürti J, Biró L P 2019 npj 2D Mater. Appl. 3 11
Google Scholar
[57] 倪光炯, 陈苏卿 2003 高等量子力学 (上海: 复旦大学出版社) 第228—229页
Ni G J, Chen S Q 2003 Advanced Quantum Mechanics (Shanghai: Fudan University Press) pp228–229 (in Chinese)
[58] 张礼, 葛墨林 2000 量子力学的前沿问题 (北京: 清华大学出版社) 第53—57页
Zhan L, Ge M L 2000 Frontier Problems of Quantum Mechanics (Beijing: Tsinghua Univerdity press) pp53–57 (in Chinese)
[59] Aharonov Y, Bohm D 1959 Phys. Rev. 115 485
Google Scholar
[60] Batelaan H, Tonomura A 2009 Phys. Today 62 38
Google Scholar
[61] 马丽, 谭振兵, 谭长玲, 杨海方, 刘广同, 杨昌黎, 吕力 2011 中国科学 41 1249
Google Scholar
Ma L, Tan Z B, Tan C L, Yan H F, Liu G T, Yang C L, Lǚ L 2011 Sci. China 41 1249
Google Scholar
[62] Cano A, Paul I 2009 Phys. Rev. B 80 153401
Google Scholar
[63] de Juna F, Cortijo A, Vozmediano M H, Cano A 2011 Nat. Phys. 7 810
Google Scholar
[64] Mao J, Milovanović S P, Anđelković M, Lai X, Cao Y, Watanabe K, Taniguchi T, Covaci L, Peeters F M, Geim A K, Jiang Y, Andrei E Y 2020 Nature 584 215
Google Scholar
[65] Kopnin N B, Heikkilä T T, Volovik G E 2011 Phys. Rev. B 83 220503
Google Scholar
[66] Kauppila V J, Aikebaier F, Heikkilä T T 2016 Phys. Rev. B 93 214505
Google Scholar
[67] Tang E, Fu L 2014 Nat. Phys. 10 964
Google Scholar
[68] Naumov I, Bratkovsky A M, Ranjan V 2009 Phys. Rev. Lett. 102 217601
Google Scholar
[69] Hong J, Vanderbilt D 2013 Phys. Rev. B 88 174107
Google Scholar
[70] Wang B, Gu Y, Zhang S, Chen L Q 2019 Prog. Mater. Sci. 106 100570
Google Scholar
[71] Ahmadpoor F, Sharma P 2015 Nanoscale 7 16555
Google Scholar
[72] Yang M M, Kim D J, Alexe M 2018 Science 360 904
Google Scholar
[73] Kumar M, Lim J, Park J Y, Seo H 2021 Small Methods 5 2100342
Google Scholar
[74] Jiang X, Huang W, Zhang S 2013 Nano Energy 2 1079
Google Scholar
[75] Kogan Sh M 1964 Sov. Phys. Solid State 5 2069
[76] Meyer R B 1969 Phys. Rev. Lett. 22 918
Google Scholar
[77] Zubko P, Catalan G, Tagantsev A K 2013 Annu. Rev. Mater. Res. 43 387
Google Scholar
[78] Wen X, Li D, Tan K, Deng Q, Shen S 2019 Phys. Rev. Lett. 122 148001
Google Scholar
[79] Chu B, Salem D R 2012 Appl. Phys. Lett. 101 103905
Google Scholar
[80] Yudin P V, Tagantsev A K 2013 Nanotechnology 24 432001
Google Scholar
[81] Nguyen T D, Mao Sh, Yeh Y W, Purohit P K, McAlpine M C 2013 Adv. Mater. 25 946
Google Scholar
[82] 舒龙龙, 梁任宏, 喻彦卓, 黄文彬, 魏晓勇, 李飞, 江小宁, 姚熹, 王雨 2018 现代技术陶瓷 39 223
Google Scholar
Shu L L, Liang R H, Yu Y Z, Huang W B, Wei X Y, Li F, Jiang X N, Yao X, Wang Y 2018 Adv. Ceram. 39 223
Google Scholar
[83] Tagantsev A K 1986 Phys. Rev. B 34 5883
Google Scholar
[84] Tagantsev A K 1991 Phase Transitions 35 119
Google Scholar
[85] Resta R 2010 Phys. Rev. Lett. 105 127601
Google Scholar
[86] Resta R 2010 Phys. Condens. Matter 22 123201
Google Scholar
[87] Tagantsev A K 1985 Zh. Eksp. Teor. Fiz. 88 2108
[88] Zubko P, Catalan G, Buckley A, Welche P R L, Scott J F 2007 Phys. Rev. Lett. 99 167601
Google Scholar
[89] Stengel M 2013 Phys. Rev. B 88 174106
Google Scholar
[90] Zhang X, Pan Q, Tian D, Zhou W, Chen P, Zhang H, Chu B 2018 Phys. Rev. Lett. 121 057602
Google Scholar
[91] Maranganti R, Sharma P 2009 Phys. Rev. B 80 054109
Google Scholar
[92] Hong J, Catalan G, Scott J F, Artacho E 2010 J. Phys. Condens. Matter 22 112201
Google Scholar
[93] Hong J, Vanderbilt D 2011 Phys. Rev. B 84 180101
Google Scholar
[94] Bennett D 2021 Electron. Struct. 3 015001
Google Scholar
[95] Codony D, Arias I, Suryanarayana P 2021 Phys. Rev. Mater. 5 L030801
Google Scholar
[96] Springolo M, Royo M, Stengel M 2021 Phys. Rev. Lett. 127 216801
Google Scholar
[97] Kalinin S V, Meunier V 2008 Phys. Rev. B 77 033403
Google Scholar
[98] Zhuang X, He B, Javvaji B, Park H S 2019 Phys. Rev. B 99 054105
Google Scholar
[99] Kumar S, Codony D, Arias I, Suryanarayana P 2021 Nanoscale 13 1600
Google Scholar
[100] Abdollahi A, Vásquez-Sancho F, Catalan G 2018 Phys. Rev. Lett. 121 205502
Google Scholar
[101] McGilly L J, Kerelsky A, Finney N R, Shapovalov K, Shih E M, Ghiotto A, Zeng Y, Moore S L, Wu W, Bai Y, Watanabe K, Taniguchi T, Stengel M, Zhou L, Hone J, Zhu X, Basov D N, Dean C, Dreyer C E, Pasupathy A N 2020 Nat. Nanotechnol. 15 580
Google Scholar
[102] Li Y, Wang X, Tang D, Wang X, Watanabe K, Taniguchi T, Gamelin D R, Cobden D H, Yankowitz M, Xu X, Li J 2021 Adv. Mater. 33 2105879
Google Scholar
[103] Kwon S R, Huang W B, Zhang S J, Yuan F G, Jiang X N 2013 Smart Mater. Struct. 22 115017
Google Scholar
[104] Glass A M, von der Linde D, Negran T J 1974 Appl. Phys. Lett. 25 233
Google Scholar
[105] Brody P S, Crowne F 1975 J. Electron. Mater. 4 955
Google Scholar
[106] Fridkin V M 2001 Crystallogr. Rep. 46 654
Google Scholar
[107] Spanier J E, Fridkin V M, Rappe A M, Akbashev A R, Polemi A, Qi Y, Gu Z, Young S M, Hawley C J, Imbrenda D, Xiao G, Bennett-Jackson A L, Johnson C L 2016 Nat. Photonics 10 611
Google Scholar
[108] Jiang J, Chen Z, Hu Y, Xiang Y, Zhang L, Wang Y, Wang G C, Shi J 2021 Nat. Nanotechnol. 16 894
Google Scholar
[109] Artyukhov V I, Gupta S, Kutana A, Yakobson B I 2020 Nano Lett. 20 3240
Google Scholar
[110] Qi Y, Kim J, Nguyen T D, Lisko B, Purohit P K, McAlpine M C 2011 Nano Lett. 11 1331
Google Scholar
[111] Wang K F, Wang B L 2016 Compos. Struct. 153 253
Google Scholar
[112] Wang K F, Wang B L 2017 Int. J. Eng. Sci. 116 88
Google Scholar
[113] Kresse G, Furthmüller J 1996 Phys. Rev. B 54 11169
Google Scholar
[114] Giannozzi P, Baroni S, Bonini N, et al. 2009 J. Phys. Condens. Matter 21 395502
Google Scholar
[115] Porezag D, Frauenheim Th, Köhler Th, Seifert G, Kaschner R 1995 Phys. Rev. B 51 12947
Google Scholar
[116] Elstner M, Porezag D, Jungnickel G, Elsner J, Haugk M, Frauenheim Th, Suhai S, Seifert G 1998 Phys. Rev. B 58 7260
Google Scholar
[117] Locatelli A, Wang C, Africh C, Stojić N, Menteş T O, Comelli G, Binggeli N 2013 ACS Nano 7 6955
Google Scholar
[118] Yue L, Seifert G, Chang K, Zhang D B 2017 Phys. Rev. B 96 201403
Google Scholar
[119] White C T, Robertson D H, Mintmire J W 1993 Phys. Rev. B 47 5485
Google Scholar
[120] Popov V N 2004 New J. Phys. 6 17
Google Scholar
[121] Allen P B 2007 Nano Lett. 7 1220
Google Scholar
[122] 张东波, 魏苏淮 2021 科学通报 66 674
Google Scholar
Zhang D B, Wei S H 2021 Chin. Sci. Bull. 66 674
Google Scholar
[123] Zhang D B, Wei S H 2017 npj Comput. Mater. 3 32
Google Scholar
[124] Rurali R, Hernández E 2003 Comput. Mater. Sci. 28 85
Google Scholar
[125] Aradi B, Hourahine B, Frauenheim T 2007 J. Phys. Chem. A 111 5678
Google Scholar
[126] Zhang D B, Seifert G, Chang K 2014 Phys. Rev. Lett. 112 096805
Google Scholar
[127] Guinea F, Geim A K, Katsnelson M I, Novoselov K S 2010 Phys. Rev. B 81 035408
Google Scholar
[128] Suzuura H, Ando T 2002 Phys. Rev. B 65 235412
Google Scholar
[129] Awschalom D D, Flatté M E 2007 Nat. Phys. 3 153
Google Scholar
[130] Fang C M, de Wijs G A, de Groot R A 2002 J. Appl. Phys. 91 8340
Google Scholar
[131] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, Von Molnar S, Roukes M L, Chtchelkanova A Y, Treger D M 2001 Science 294 1488
Google Scholar
[132] Felser C, Fecher G H, Balke B 2007 Angew. Chem. Int. Ed. 46 668
Google Scholar
[133] Zhang D, Zhang D B, Yang F, Lin H Q, Xu H, Chang K 2015 2D Mater. 2 041001
Google Scholar
[134] Pruneda J M 2010 Phys. Rev. B 81 161409
Google Scholar
[135] Bhowmick S, Singh A K, Yakobson B I 2011 J. Phys. Chem. C 115 9889
[136] Levendorf M, Kim C, Brown L, Huang P, Havener R W, Muller D A, Park J 2012 Nature 488 627
Google Scholar
[137] Sutter P, Cortes R, Lahiri J, Sutter E 2012 Nano Lett. 12 4869
Google Scholar
[138] Sutter P, Huang Y, Sutter E 2014 Nano Lett. 14 4846
Google Scholar
[139] Liu Z, Ma L, Shi G, Zhou W, Gong Y, Lei S, Yang X, Zhang J, Yu J, Hackenberg K P, Babakhani A, Idrobo J C, Vajtai R, Lou J, Ajayan P M 2013 Nat. Nanotechnol. 8 119
Google Scholar
[140] Liu L, Park J, Siegel D A, McCarty K F, Clark K W, Deng W, Basile L, Idrobo J C, Li A P, Gu G 2014 Science 343 163
Google Scholar
[141] Liu M, Li Y, Chen P, Sun J, Ma D, Li Q, Gao T, Gao Y, Cheng Z, Qiu X, Fang Y, Zhang Y, Liu Z 2014 Nano Lett. 14 6342
Google Scholar
[142] Drost R, Uppstu A, Schulz F, Hamalainen S K, Ervasti M, Harju A, Liljeroth P 2014 Nano Lett. 14 5128
Google Scholar
[143] Kim S W, Kim H J, Choi J H, Scheicher R H, Cho J H 2015 Phys. Rev. B 92 035443
Google Scholar
[144] Zeng J, Chen W, Cui P, Zhang D B, Zhang Z 2016 Phys. Rev. B 94 235425
Google Scholar
[145] Liu Z, Fu X, Zhang D B 2020 Nanoscale 12 19083
Google Scholar
计量
- 文章访问数: 8245
- PDF下载量: 344
- 被引次数: 0