Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb)

Xiong Xiang-Jie Zhong Fang Zhang Zi-Wen Chen Fang Luo Jing-Lan Zhao Yu-Qing Zhu Hui-Ping Jiang Shao-Long

Citation:

Photovoltaic properties of two-dimensional van der Waals heterostructure Cs3X2I9/InSe (X = Bi, Sb)

Xiong Xiang-Jie, Zhong Fang, Zhang Zi-Wen, Chen Fang, Luo Jing-Lan, Zhao Yu-Qing, Zhu Hui-Ping, Jiang Shao-Long
PDF
HTML
Get Citation
  • Two-dimensional semiconductor heterostructures have excellent physical properties such as high light absorption coefficients, large diffusion lengths, high carrier mobility rates, and tunable energy band structures, which have great potential in the field of optoelectronic devices. Therefore, designing two-dimensional (2D) semiconductor van der Waals heterostructures is an effective strategy for realizing multifunctional microelectronic devices. In this work, the 2D van der Waals heterostructure Cs3X2I9/InSe of non-lead Perovskite Cs3X2I9 and indium-tin InSe is constructed to avoid the toxicity and stability problems of lead-based Perovskites. The geometry, electronic structure, and optical properties are calculated based on the first-principles approach of density-functional theory. It is shown that the 2D Cs3Bi2I9/InSe and Cs3Sb2I9/InSe heterostructures are of type-II energy band arrangement and have band gaps of 1.61 eV and 1.19 eV, respectively, with high absorption coefficients in the visible range and UV range reaching to 5×105 cm–1. The calculation results from the deformation potential theory and the hydrogen-like atom model show that the 2D Cs3X2I9/InSe heterostructure has a high exciton binding energy (~0.7 eV) and electron mobility rate (~700 cm2/(V·s)). The higher light absorption coefficient, carrier mobility, and exciton energy make the 2D Cs3X2I9/InSe heterostructures suitable for photoluminescent devices. However, the energy band structure based on the Shockley-Queisser limit and type-II arrangement shows that the intrinsic photoelectric conversion efficiency (PCE) of the 2D Cs3X2I9/InSe heterostructure is only about 1.4%, which is not suitable for photovoltaic solar energy. In addition, the modulation and its effect of biaxial strain on the photovoltaic properties of 2D Cs3X2I9/InSe heterostructures are further investigated. The results show that biaxial strain can improve the visible absorption coefficient of 2D Cs3X2I9/InSe heterostructure, but cannot effectively improve its energy band structure, and the PCE only increases to 3.3% at –5% biaxial strain. The above study provides a theoretical basis for designing efficient 2D van der Waals optoelectronic devices in future.
      Corresponding author: Zhao Yu-Qing, yqzhao@hnu.edu.cn ; Zhu Hui-Ping, zhuhuiping@ime.ac.cn ; Jiang Shao-Long, jiangshaolong@quantumsc.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12204166), the Natural Science Foundation of Hunan Province, China (Grant No. 2024JJ5132), the National Key Research and Development Program of China (Grant No. 2023YFB3611700), and the Initial Scientific Research Fund of Hunan University of Science and Technology, China (Grant No. E51996).
    [1]

    Xue M, Jiang F Y, Qin F, Li Z F, Tong J H, Xiong S X, Meng W, Zhou Y H 2014 ACS Appl. Mater. Interfaces 6 22628Google Scholar

    [2]

    Gu S, Lin R, Han Q, Gao Y, Tan H, Zhu J 2020 Adv. Mater. 32 1907392Google Scholar

    [3]

    Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082Google Scholar

    [4]

    Zhang D B, Hu S, Liu X, Chen Y Z, Xia Y D, Wang H, Wang H Y, Ni Y X 2021 ACS Appl. Energy Mater. 1 357Google Scholar

    [5]

    Zhuang Q Y, Li J, He C Y, Yang T O, Zhang C X, Tang C, Zhong J X 2021 Nanoscale Adv. 3 3643Google Scholar

    [6]

    Gray H B 2009 Nat. Chem. 1 7Google Scholar

    [7]

    Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang S Y 2024 Appl. Phys. Lett. 124 052903Google Scholar

    [8]

    Jeong J, Kim M J, Seo J D, Lu H Z, Ahlawat P, Mishra A, Yang Y G, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [9]

    陈亮, 张利伟, 陈永升 2018 67 028801Google Scholar

    Chen L, Zhang L W, Chen Y S 2018 Acta Phys. Sin. 67 028801Google Scholar

    [10]

    张钰, 周欢萍 2019 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [11]

    Sun J C, Wu J, Tong X, Lin F, Wang Y A, Wang Z M 2018 Adv. Sci. 5 1700780Google Scholar

    [12]

    Jiang Y, Xu T F, Du H Q, Rothmann M U, Yin Z W, Yuan Y, Xiang W C, Hu Z Y, Liang G J, Liu S Z, Nazeeruddin M K, Cheng Y N, Li W 2023 Joule 7 2905Google Scholar

    [13]

    Tailor N K, Satapathi S 2020 ACS Appl. Energy Mater. 3 11732Google Scholar

    [14]

    Yu Z L, Zhao Y Q, Wan Q, Liu B, Yang J L, Cai M Q 2020 J. Phys. Condens. Matter. 32 205504Google Scholar

    [15]

    Zhang Z W, Liu Z S, Zhang J J, Sun B N, Zou D F, Nie G Z, Chen M Y, Zhao Y Q, Jiang S L 2023 Phys. Chem. Chem. Phys. 25 9548Google Scholar

    [16]

    Liao C S, Ding Y F, Zhao Y Q, Cai Q M 2021 Appl. Phys. Lett. 1 November 119 182903Google Scholar

    [17]

    Chen X K, Zhang E M, Wu D, Chen K Q 2023 Phys. Rev. Applied 19 044052Google Scholar

    [18]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [19]

    Chen X K, Zhang Y, Luo Q Q, Chen X, Jia P, Zhuo W X 2023 Phys. Rev. B 108 235420Google Scholar

    [20]

    Sun B, Ding Y F, He P B, Zhao Y Q, Cai M Q 2021 Phys. Rev. Applied 16 044003Google Scholar

    [21]

    Arfin H, Kshirsagar A S, Kaur J, Mondal B, Xia Z G, Chakraborty S, Nag A 2020 Chem. Mater 32 10267Google Scholar

    [22]

    Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S K, Wu H Z 2020 Adv. Sci. 7 1903143Google Scholar

    [23]

    Zeng M Y, Zhao Y Q, Cai M Q 2021 Phys. Rev. Appl. 16 054019Google Scholar

    [24]

    Li J, Guo X Y, Hu X M, Wang W, Tai Y Y, Xie M, Zhi L, Zhang S L, Zeng H B 2023 Appl. Surf. Sci. 618 156626Google Scholar

    [25]

    Jin Z X, Zhang Z, Xiu J W, Song H S, Gatti T, He Z B 2020 J. Mater. Chem. A 8 16166Google Scholar

    [26]

    Li L J, Ye G, Luo T Y, Chen X Y, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2022 J. Phys. Chem. C 126 3646Google Scholar

    [27]

    Oh J M, Venters C C, Di C, Pinto A M, Wan L L, Younis I, Cai Z Q, Arai C, So B R, Duan1 J Q, Dreyfuss G 2020 Nat. Commun. 11 1Google Scholar

    [28]

    Zhang J Y, Li A F, Li B H, Yang M M, Hao X, Wu L L, Zhao D W, Xia G P, Ren Z F, Tian W B, Yang D Y, Zhang J Q 2022 ACS Photonics 9 641Google Scholar

    [29]

    Li A F, Yang M M, Tang P, Hao X, Wu L L, Tian W B, Yang D Y, Zhang J Q 2023 ACS Appl. Mater. Interfaces 15 23390Google Scholar

    [30]

    Zhang H J, Xu Y D, Sun Q H, Dong J P, Lu Y F, Zhang B B, Jie W Q 2018 Cryst. Eng. Comm. 20 4935Google Scholar

    [31]

    McCall K M, Liu Z F, Trimarchi G, Stoumpos C C, Lin W W, He Y H, Hadar I, Kanatzidis M G, Wessels B W 2018 ACS Photonics 5 3748Google Scholar

    [32]

    Bresolin B M, Balayeva N O, Granone L I, Dillert R, Bahnemann D W, Sillanpaa M 2020 Sol. Energy Mater. Sol. C. 204 110214Google Scholar

    [33]

    Adams K, Mallows J, Li T Y, Kampouris D, Thijssen J B J, Robertson N 2019 J. Phys. Energy 1 034001Google Scholar

    [34]

    Cuhadar C, Kim S G, Yang J M, Seo J Y, Lee D, Park N G 2018 ACS Appl. Mater. Interfaces 10 29741Google Scholar

    [35]

    Hussain A A 2020 ACS Appl. Mater. Interfaces 12 46317Google Scholar

    [36]

    Tewari N, Shivarudraiah S B, Halpert J E 2021 Nano Lett. 21 5578Google Scholar

    [37]

    Li Y, Wang J H, Shen G Z 2022 Adv. Sci. 9 2202123Google Scholar

    [38]

    Yu Z L, Jia Y T, Lang L, Sun X X, Zou Z J, Li F, Zhao Y Q, Liu B, Li C, Liao G H 2023 J. Phys. : Condens. Matter 35 145501Google Scholar

    [39]

    郭瑞, 魏星, 曹末云, 张妍, 杨云, 樊继斌, 刘剑, 田野, 赵泽坤, 段理 2022 化学学报 80 526Google Scholar

    Guo R, Wei X, Cao M Y, Zhang Y, Yang Y, Fan J B, Liu J, Tian Y, Zhao Z K, Duan L 2022 Acta Chim. Sinica 80 526Google Scholar

    [40]

    Yuan X J, Liu X J 2022 Phys. Chem. Chem. Phys. 24 17703Google Scholar

    [41]

    Yuan X J, Tang S H, Qiu S, Liu X J 2023 J. Phys. Chem. C 127 1828Google Scholar

    [42]

    Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H, He Z B 2019 J. Mater. Chem. A 7 8818Google Scholar

    [43]

    Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104Google Scholar

    [44]

    Zhao Y Q, Xu Y, Zou D F, Wang J N, Xie G F, Liu B, Cai M Q, Jiang S L 2020 J. Phys. : Condens. Matter 32 195501Google Scholar

    [45]

    Sun G, Kutri J, Rajczy P, Kertesz M, Hafner J, Kresse G 2003 J. Molecular Structure: Theochem. 624 37Google Scholar

    [46]

    Perdew J P, Burke K, Wang Y 1996 Phys. Rev. B 54 16533Google Scholar

    [47]

    Ernzerhof M, Perdew J P 1998 J. Chem. Phys. 109 3313Google Scholar

    [48]

    Steinmann S N, Corminboeuf C 2011 J. Chem. Phys. 134 044117Google Scholar

    [49]

    Xia C X, Du J, Huang X W, Xiao X B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97 115416Google Scholar

    [50]

    Gajdos G, Hummer K, Kresse G, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [51]

    Sun S S, Meng F C, Wang H Y, Wang H, Ni Y X 2018 J. Mater. Chem. A 6 11890Google Scholar

    [52]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [53]

    Dong S, Li Y C 2021 Phys. Rev. B 104 085133Google Scholar

    [54]

    Zhong F, Nie G Z, Lang Y F, Zhang Z W, Li H L, Gan L F, Xu Y, Zhao Y Q 2023 Phys. Chem. Chem. Phys. 25 3175Google Scholar

    [55]

    Choi J H, Cui P, Lan H P, Zhang Z Y 2015 Phys. Rev. Letters 115 066403Google Scholar

    [56]

    江德生 2005 物理 34 521Google Scholar

    Jiang D S 2005 Physics. 34 521Google Scholar

    [57]

    Sun P P, Li Q S, Feng S, Li Z S 2016 Phys. Chem. Chem. Phys. 18 14408Google Scholar

    [58]

    Zhou L J, Zhang Y F, Wu L M 2013 Nano Lett. 13 5431Google Scholar

    [59]

    Hu W, Lin L, Zhang R Q, Yang C, Yang J L 2017 J. Am. Chem. Soc. 139 15429Google Scholar

  • 图 1  (a) Cs3Bi2I9/InSe 和(b) Cs3Sb2I9/InSe 的原子结构俯视和侧视图, 其中ab为晶格矢量, d为 Cs3X2I9层和 InSe 层之间的层间距离

    Figure 1.  Top and side views of the atomic structures for the (a) Cs3Bi2I9/InSe heterostructure, and (b) Cs3Sb2I9/InSe heterostructure, where a and b are the lattice vectors and d is the interlayer distance between the Cs3X2I9 and InSe layers.

    图 2  (a) Cs3Bi2I9, (b) Cs3Sb2I9和(c) InSe单体结构的HSE06能带结构

    Figure 2.  Band structures of monolayer (a) Cs3Bi2I9, (b) Cs3Sb2I9 and (c) InSe.

    图 3  (a) Cs3Bi2I9/InSe和(b) Cs3Sb2I9/InSe异质结的能带结构; (c) Cs3X2I9/InSe异质结的载流子迁移机制, 其中红色和蓝色分别代表InSe和Cs3X2I9的电子轨道贡献

    Figure 3.  Band structures of (a) Cs3Bi2I9/InSe heterostructure and (b) Cs3Sb2I9/InSe heterostructure; (c) carrier migration mechanisms in Cs3X2I9/InSe heterostructures, the red and blue lines represent the electronic orbital contributions for InSe and Cs3X2I9, respectively.

    图 4  (a) 二维Cs3Bi2I9/InSe和 (b) Cs3Sb2I9/InSe异质结及其各自层在可见光谱中的光吸收系数

    Figure 4.  Optical absorption coefficients of (a) 2D Cs3Bi2I9/InSe heterostructure and (b) Cs3Sb2I9/InSe heterostructure and their respective layers in the visible spectrum.

    图 5  基于双轴应变的(a) Cs3Bi2I9/InSe和(b) Cs3Sb2I9/InSe vdWHs带边能量

    Figure 5.  Biaxial strain-based (a) Cs3Bi2I9/InSe and (b) Cs3Sb2I9/InSe vdWHs band edge energy.

    图 6  双轴应变对 (a) Cs3Bi2I9/InSe和(b) Cs3Sb2I9/InSe vdWHs光吸收系数的调控; (c) Cs3X2I9/InSe结构PCE图

    Figure 6.  Biaxial strain on optical absorption coefficients of (a) Cs3Bi2I9/InSe and (b) Cs3Sb2I9/InSe vdWHs; (c) PCE map of intrinsic Cs3X2I9/InSe.

    表 1  二维 Cs3X2I9/InSe异质结的晶格常数(a, b)、层间距离(d)、激子结合能(Eb)、带隙(Gap)和晶格失配比(ε)

    Table 1.  Lattice constants (a, b), interlayer distances (d), exciton binding energy (Eb), band gap (Gap) and lattice mismatch ratio (ε) of 2D Cs3X2I9/InSe heterostructures.

    Heterostructure Lattice/Å d Eb/eV Gap/eV ε/%
    Cs3Bi2I9/InSe a = 8.32 3.71 0.79 1.61 1.89
    b = 8.32
    Cs3Sb2I9/InSe a = 8.30 3.77 0.73 1.19 1.61
    b = 8.30
    DownLoad: CSV

    表 2  300 K下的电子和空穴沿xy方向的有效质量m (m0)、DP常数E1 (eV)、二维弹性模量C2D (N/m)和载流子迁移速率μ2D (cm2·V–1·s–1)

    Table 2.  Effective masses m (m0), DP E1 (eV), 2D modulus of elasticity C2D (N/m) and carrier mobility μ2D (cm2·V–1·s–1) for electron and hole along and y directions at 300 K.

    Carrier typemxmyElxElyC2D_ xC2D_ yμ2D_ xμ2D_ y
    ElectronCs3Bi2I9/InSe0.220.238.628.62122.96122.96472.80425.55
    Cs3Sb2I9/InSe0.240.227.137.13125.76123.22619.99692.30
    HoleCs3Bi2I9/InSe1.160.976.436.43122.96122.9631.3944.32
    Cs3Sb2I9/InSe1.010.758.688.68125.76123.2223.0440.94
    DownLoad: CSV
    Baidu
  • [1]

    Xue M, Jiang F Y, Qin F, Li Z F, Tong J H, Xiong S X, Meng W, Zhou Y H 2014 ACS Appl. Mater. Interfaces 6 22628Google Scholar

    [2]

    Gu S, Lin R, Han Q, Gao Y, Tan H, Zhu J 2020 Adv. Mater. 32 1907392Google Scholar

    [3]

    Bernardi M, Palummo M, Grossman J C 2012 ACS Nano 6 10082Google Scholar

    [4]

    Zhang D B, Hu S, Liu X, Chen Y Z, Xia Y D, Wang H, Wang H Y, Ni Y X 2021 ACS Appl. Energy Mater. 1 357Google Scholar

    [5]

    Zhuang Q Y, Li J, He C Y, Yang T O, Zhang C X, Tang C, Zhong J X 2021 Nanoscale Adv. 3 3643Google Scholar

    [6]

    Gray H B 2009 Nat. Chem. 1 7Google Scholar

    [7]

    Lang Y F, Zou D F, Xu Y, Jiang S L, Zhao Y Q, Ang S Y 2024 Appl. Phys. Lett. 124 052903Google Scholar

    [8]

    Jeong J, Kim M J, Seo J D, Lu H Z, Ahlawat P, Mishra A, Yang Y G, Hope M A, Eickemeyer F T, Kim M, Yoon Y J, Choi I W, Darwich B P, Choi S J, Jo Y, Lee J H, Walker B, Zakeeruddin S M, Emsley L, Rothlisberger U, Hagfeldt A, Kim D S, Grätzel M, Kim J Y 2021 Nature 592 381Google Scholar

    [9]

    陈亮, 张利伟, 陈永升 2018 67 028801Google Scholar

    Chen L, Zhang L W, Chen Y S 2018 Acta Phys. Sin. 67 028801Google Scholar

    [10]

    张钰, 周欢萍 2019 68 158804Google Scholar

    Zhang Y, Zhou H P 2019 Acta Phys. Sin. 68 158804Google Scholar

    [11]

    Sun J C, Wu J, Tong X, Lin F, Wang Y A, Wang Z M 2018 Adv. Sci. 5 1700780Google Scholar

    [12]

    Jiang Y, Xu T F, Du H Q, Rothmann M U, Yin Z W, Yuan Y, Xiang W C, Hu Z Y, Liang G J, Liu S Z, Nazeeruddin M K, Cheng Y N, Li W 2023 Joule 7 2905Google Scholar

    [13]

    Tailor N K, Satapathi S 2020 ACS Appl. Energy Mater. 3 11732Google Scholar

    [14]

    Yu Z L, Zhao Y Q, Wan Q, Liu B, Yang J L, Cai M Q 2020 J. Phys. Condens. Matter. 32 205504Google Scholar

    [15]

    Zhang Z W, Liu Z S, Zhang J J, Sun B N, Zou D F, Nie G Z, Chen M Y, Zhao Y Q, Jiang S L 2023 Phys. Chem. Chem. Phys. 25 9548Google Scholar

    [16]

    Liao C S, Ding Y F, Zhao Y Q, Cai Q M 2021 Appl. Phys. Lett. 1 November 119 182903Google Scholar

    [17]

    Chen X K, Zhang E M, Wu D, Chen K Q 2023 Phys. Rev. Applied 19 044052Google Scholar

    [18]

    Chen X K, Hu X Y, Jia P, Xie Z X, Liu J 2021 Int. J. Mech. Sci. 206 106576Google Scholar

    [19]

    Chen X K, Zhang Y, Luo Q Q, Chen X, Jia P, Zhuo W X 2023 Phys. Rev. B 108 235420Google Scholar

    [20]

    Sun B, Ding Y F, He P B, Zhao Y Q, Cai M Q 2021 Phys. Rev. Applied 16 044003Google Scholar

    [21]

    Arfin H, Kshirsagar A S, Kaur J, Mondal B, Xia Z G, Chakraborty S, Nag A 2020 Chem. Mater 32 10267Google Scholar

    [22]

    Attique S, Ali N, Ali S, Khatoon R, Li N, Khesro A, Rauf S, Yang S K, Wu H Z 2020 Adv. Sci. 7 1903143Google Scholar

    [23]

    Zeng M Y, Zhao Y Q, Cai M Q 2021 Phys. Rev. Appl. 16 054019Google Scholar

    [24]

    Li J, Guo X Y, Hu X M, Wang W, Tai Y Y, Xie M, Zhi L, Zhang S L, Zeng H B 2023 Appl. Surf. Sci. 618 156626Google Scholar

    [25]

    Jin Z X, Zhang Z, Xiu J W, Song H S, Gatti T, He Z B 2020 J. Mater. Chem. A 8 16166Google Scholar

    [26]

    Li L J, Ye G, Luo T Y, Chen X Y, Zhang G J, Wu H, Yang L, Zhang W F, Chang H X 2022 J. Phys. Chem. C 126 3646Google Scholar

    [27]

    Oh J M, Venters C C, Di C, Pinto A M, Wan L L, Younis I, Cai Z Q, Arai C, So B R, Duan1 J Q, Dreyfuss G 2020 Nat. Commun. 11 1Google Scholar

    [28]

    Zhang J Y, Li A F, Li B H, Yang M M, Hao X, Wu L L, Zhao D W, Xia G P, Ren Z F, Tian W B, Yang D Y, Zhang J Q 2022 ACS Photonics 9 641Google Scholar

    [29]

    Li A F, Yang M M, Tang P, Hao X, Wu L L, Tian W B, Yang D Y, Zhang J Q 2023 ACS Appl. Mater. Interfaces 15 23390Google Scholar

    [30]

    Zhang H J, Xu Y D, Sun Q H, Dong J P, Lu Y F, Zhang B B, Jie W Q 2018 Cryst. Eng. Comm. 20 4935Google Scholar

    [31]

    McCall K M, Liu Z F, Trimarchi G, Stoumpos C C, Lin W W, He Y H, Hadar I, Kanatzidis M G, Wessels B W 2018 ACS Photonics 5 3748Google Scholar

    [32]

    Bresolin B M, Balayeva N O, Granone L I, Dillert R, Bahnemann D W, Sillanpaa M 2020 Sol. Energy Mater. Sol. C. 204 110214Google Scholar

    [33]

    Adams K, Mallows J, Li T Y, Kampouris D, Thijssen J B J, Robertson N 2019 J. Phys. Energy 1 034001Google Scholar

    [34]

    Cuhadar C, Kim S G, Yang J M, Seo J Y, Lee D, Park N G 2018 ACS Appl. Mater. Interfaces 10 29741Google Scholar

    [35]

    Hussain A A 2020 ACS Appl. Mater. Interfaces 12 46317Google Scholar

    [36]

    Tewari N, Shivarudraiah S B, Halpert J E 2021 Nano Lett. 21 5578Google Scholar

    [37]

    Li Y, Wang J H, Shen G Z 2022 Adv. Sci. 9 2202123Google Scholar

    [38]

    Yu Z L, Jia Y T, Lang L, Sun X X, Zou Z J, Li F, Zhao Y Q, Liu B, Li C, Liao G H 2023 J. Phys. : Condens. Matter 35 145501Google Scholar

    [39]

    郭瑞, 魏星, 曹末云, 张妍, 杨云, 樊继斌, 刘剑, 田野, 赵泽坤, 段理 2022 化学学报 80 526Google Scholar

    Guo R, Wei X, Cao M Y, Zhang Y, Yang Y, Fan J B, Liu J, Tian Y, Zhao Z K, Duan L 2022 Acta Chim. Sinica 80 526Google Scholar

    [40]

    Yuan X J, Liu X J 2022 Phys. Chem. Chem. Phys. 24 17703Google Scholar

    [41]

    Yuan X J, Tang S H, Qiu S, Liu X J 2023 J. Phys. Chem. C 127 1828Google Scholar

    [42]

    Yu B B, Liao M, Yang J X, Chen W, Zhu Y D, Zhang X S, Duan T, Yao W T, Wei S H, He Z B 2019 J. Mater. Chem. A 7 8818Google Scholar

    [43]

    Zhao Y Q, Liu Z S, Nie G Z, Zhu Z H, Chai Y F, Wang J N, Cai M Q, Jiang S L 2021 Appl. Phys. Lett. 118 173104Google Scholar

    [44]

    Zhao Y Q, Xu Y, Zou D F, Wang J N, Xie G F, Liu B, Cai M Q, Jiang S L 2020 J. Phys. : Condens. Matter 32 195501Google Scholar

    [45]

    Sun G, Kutri J, Rajczy P, Kertesz M, Hafner J, Kresse G 2003 J. Molecular Structure: Theochem. 624 37Google Scholar

    [46]

    Perdew J P, Burke K, Wang Y 1996 Phys. Rev. B 54 16533Google Scholar

    [47]

    Ernzerhof M, Perdew J P 1998 J. Chem. Phys. 109 3313Google Scholar

    [48]

    Steinmann S N, Corminboeuf C 2011 J. Chem. Phys. 134 044117Google Scholar

    [49]

    Xia C X, Du J, Huang X W, Xiao X B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97 115416Google Scholar

    [50]

    Gajdos G, Hummer K, Kresse G, Furthmuller J, Bechstedt F 2006 Phys. Rev. B 73 045112Google Scholar

    [51]

    Sun S S, Meng F C, Wang H Y, Wang H, Ni Y X 2018 J. Mater. Chem. A 6 11890Google Scholar

    [52]

    Cai Y Q, Zhang G, Zhang Y W 2014 J. Am. Chem. Soc. 136 6269Google Scholar

    [53]

    Dong S, Li Y C 2021 Phys. Rev. B 104 085133Google Scholar

    [54]

    Zhong F, Nie G Z, Lang Y F, Zhang Z W, Li H L, Gan L F, Xu Y, Zhao Y Q 2023 Phys. Chem. Chem. Phys. 25 3175Google Scholar

    [55]

    Choi J H, Cui P, Lan H P, Zhang Z Y 2015 Phys. Rev. Letters 115 066403Google Scholar

    [56]

    江德生 2005 物理 34 521Google Scholar

    Jiang D S 2005 Physics. 34 521Google Scholar

    [57]

    Sun P P, Li Q S, Feng S, Li Z S 2016 Phys. Chem. Chem. Phys. 18 14408Google Scholar

    [58]

    Zhou L J, Zhang Y F, Wu L M 2013 Nano Lett. 13 5431Google Scholar

    [59]

    Hu W, Lin L, Zhang R Q, Yang C, Yang J L 2017 J. Am. Chem. Soc. 139 15429Google Scholar

  • [1] Zhang Leng, Shen Yu-Hao, Tang Chao-Yang, Wu Kong-Ping, Zhang Peng-Zhan, Liu Fei, Hou Ji-Wei. Effect of uniaxial strain on Hole mobility of Sb2Se3. Acta Physica Sinica, 2024, 73(11): 117101. doi: 10.7498/aps.73.20240175
    [2] Ma Ze-Cheng, Liu Zeng-Lin, Cheng Bin, Liang Shi-Jun, Miao Feng. In-situ strain engineering and applications of van der Waals materials. Acta Physica Sinica, 2024, 73(11): 110701. doi: 10.7498/aps.73.20240353
    [3] Yang Hai-Lin, Chen Qi-Li, Gu Xing, Lin Ning. First-principles calculations of O-atom diffusion on fluorinated graphene. Acta Physica Sinica, 2023, 72(1): 016801. doi: 10.7498/aps.72.20221630
    [4] Jiang Zhou, Jiang Xue, Zhao Ji-Jun. Electronic properties of two-dimensional kagome lattice based on transition metal phthalocyanine heterojunctions. Acta Physica Sinica, 2023, 72(24): 247502. doi: 10.7498/aps.72.20230921
    [5] Yang Wei, Han Jiang-Chao, Cao Yuan, Lin Xiao-Yang, Zhao Wei-Sheng. Efficient spin injection in Fe3GeTe2/h-BN/graphene heterostructure. Acta Physica Sinica, 2021, 70(12): 129101. doi: 10.7498/aps.70.20202136
    [6] Wang Hao-Lin, Zong Qi-Jun, Huang Yan, Chen Yi-Wei, Zhu Yu-Jian, Wei Ling-Nan, Wang Lei. Recent progress of transfer methods of two-dimensional atomic crystals and high-quality electronic devices. Acta Physica Sinica, 2021, 70(13): 138202. doi: 10.7498/aps.70.20210929
    [7] Liang Ting, Wang Yang-Yang, Liu Guo-Hong, Fu Wang-Yang, Wang Huai-Zhang, Chen Jing-Fei. First-principles investigations on gas adsorption properties of V-doped monolayer MoS2. Acta Physica Sinica, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [8] Liu Zi-Yuan, Pan Jin-Bo, Zhang Yu-Yang, Du Shi-Xuan. First principles calculation of two-dimensional materials at an atomic scale. Acta Physica Sinica, 2021, 70(2): 027301. doi: 10.7498/aps.70.20201636
    [9] Wang Yan, Chen Nan-Di, Yang Chen, Zeng Zhao-Yi, Hu Cui-E, Chen Xiang-Rong. Thermoelectric transport properties of two-dimensional materials XTe2 (X = Pd, Pt) via first-principles calculations. Acta Physica Sinica, 2021, 70(11): 116301. doi: 10.7498/aps.70.20201939
    [10] Wang Lan, Cheng Si-Yuan, Zeng Hang-Hang, Xie Cong-Wei, Gong Yuan-Hao, Zheng Zhi, Fan Xiao-Li. Structure prediction of CuBiI ternary compound and first-principles study of photoelectric properties. Acta Physica Sinica, 2021, 70(20): 207305. doi: 10.7498/aps.70.20210145
    [11] Luan Li-Jun, He Yi, Wang Tao, Liu Zong-Wen. First-principles study of e interface interaction and photoelectric properties of the solar cell heterojunction CdS/CdMnTe. Acta Physica Sinica, 2021, 70(16): 166302. doi: 10.7498/aps.70.20210268
    [12] Chen Zhuo,  Fang Lei,  Chen Yuan-Fu. Fabrication and photovoltaic performance of counter electrode of 3D porous carbon composite. Acta Physica Sinica, 2019, 68(1): 017802. doi: 10.7498/aps.68.20181833
    [13] Huang Bing-Quan, Zhou Tie-Ge, Wu Dao-Xiong, Zhang Zhao-Fu, Li Bai-Kui. Properties of vacancies and N-doping in monolayer g-ZnO: First-principles calculation and molecular orbital theory analysis. Acta Physica Sinica, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [14] Zhang Wei,  Chen Kai-Bin,  Chen Zhen-Dong. First-principles study on Jahn-Teller effect in Cr monolayer film. Acta Physica Sinica, 2018, 67(23): 237301. doi: 10.7498/aps.67.20181669
    [15] Zhang Zhao-Fu, Zhou Tie-Ge, Zuo Xu. First-principles calculations of h-BN monolayers by doping with oxygen and sulfur. Acta Physica Sinica, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [16] Liu Yue-Ying, Zhou Tie-Ge, Lu Yuan, Zuo Xu. First principles caculations of h-BN monolayer with group IA/IIA elements replacing B as impurities. Acta Physica Sinica, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [17] Tan Xing-Yi, Jin Ke-Xin, Chen Chang-Le, Zhou Chao-Chao. Electronic structure of YFe2B2by first-principles calculation. Acta Physica Sinica, 2010, 59(5): 3414-3417. doi: 10.7498/aps.59.3414
    [18] Liu Yu-Min, Yu Zhong-Yuan, Ren Xiao-Min. Effects of the thickness of spacing layer and capping layer on the strain distribution and wavelength emission of InAs/GaAs quantum dot. Acta Physica Sinica, 2009, 58(1): 66-72. doi: 10.7498/aps.58.66
    [19] Liu Li-Hua, Zhang Ying, Lü Guang-Hong, Deng Sheng-Hua, Wang Tian-Min. First-principles study of the effects of Sr segregated on Al grain boundary. Acta Physica Sinica, 2008, 57(7): 4428-4433. doi: 10.7498/aps.57.4428
    [20] Song Qing-Gong, Jiang En-Yong, Pei Hai-Lin, Kang Jian-Hai, Guo Ying. First principles computational study on the stability of Li ion-vacancy two-dimensional ordered structures in intercalation compounds LixTiS2. Acta Physica Sinica, 2007, 56(8): 4817-4822. doi: 10.7498/aps.56.4817
  • supplement 13-20240434Suppl.pdf supplement
Metrics
  • Abstract views:  1922
  • PDF Downloads:  91
  • Cited By: 0
Publishing process
  • Received Date:  26 March 2024
  • Accepted Date:  29 April 2024
  • Available Online:  17 May 2024
  • Published Online:  05 July 2024

/

返回文章
返回
Baidu
map