-
Superconductivity has become a fascinating research field in condensed matter physics since its discovery in 1911. Nowadays, two-dimensional materials exhibit a variety of new physical phenomena, such as Ising superconductivity, topological superconductivity, and unconventional superconductivity. A number of two-dimensional van der Waals crystals exhibit superconductivity, which provide us with a broad research platform for exploring various physical effects and novel phenomena. In this review, we focus our attention on superconducting properties of two-dimensional van der Waals crystals, and highlight the recent progress of the state-of-the-art research on synthesis, characterization, and isolation of single and few layer nanosheets and the assembly of two-dimensional van der Waals superconductors. Finally we conclude the future research directions and prospects in two-dimensional materials with superconductivity.
-
Keywords:
- superconductivity /
- two-dimensional van der Waals crystals /
- fabrication and characterization /
- property manipulation
[1] van Delft D, Kes P 2010 Physics Today 63 38
Google Scholar
[2] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175
Google Scholar
[3] Hahn S, Kim K, Kim K, Hu X, Painter T, Dixon I, Kim S, Bhattarai K R, Noguchi S, Jaroszynski J, Larbalestier D C 2019 Nature 570 496
Google Scholar
[4] 熊嘉阳, 邓自刚 2021 交通运输工程学报 21 177
Google Scholar
Xiong J Y, Deng Z G 2021 J. Traffic Transport. Eng. 21 177
Google Scholar
[5] Mott N F 1968 Philos. Mag. 17 1259
Google Scholar
[6] Strongin M, Thompson R S, Kammerer O F, Crow J E 1970 Phys. Rev. B 1 1078
Google Scholar
[7] Uchihashi T 2016 Supercond. Sci. Technol. 30 013002
Google Scholar
[8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[9] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[10] Wang Q, Zhang W, Wang L, He K, Ma X, Xue Q 2013 J. Phys. Condens. Matter 25 095002
Google Scholar
[11] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
Google Scholar
[12] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989
Google Scholar
[13] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷 2021 70 138202
Google Scholar
Wang H L, Zong Q J, Huang Y, Chen Y W, Zhu Y J, Wei L N, Wang L 2021 Acta Phys. Sin. 70 138202
Google Scholar
[14] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Nature 556 43
Google Scholar
[15] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139
Google Scholar
[16] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
Google Scholar
[17] Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659
Google Scholar
[18] Bussmann Holder A, Keller H 2020 Z. Naturforsch. B. 75 3
Google Scholar
[19] Liu G, Bao X, Dong W, Wei Q, Mu H, Zhu W, Wang B, Li J, Shabbir B, Huang Y, Xing G, Yu J, Gao P, Shao H, Li X, Bao Q 2021 ACS Nano 15 8919
Google Scholar
[20] Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124
Google Scholar
[21] Kharissova O V, Kopnin E M, Maltsev V V, Leonyuk N I, León Rossano L M, Pinus I Y, Kharisov B I 2014 Crit. Rev. Solid State Mater. Sci. 39 253
Google Scholar
[22] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451
Google Scholar
[23] Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X, Jiang M 2014 Nat. Commun. 5 5708
Google Scholar
[24] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, Zhang Y B 2019 Nature 575 156
Google Scholar
[25] Lee K H, Hoffmann R 2006 J. Phys. Chem. A 110 609
Google Scholar
[26] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782
Google Scholar
[27] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳 2021 70 127801
Google Scholar
Jiang X H, Qin S C, Xing Z Y, Zou X Y, Deng Y F, Wang W, Wang L 2021 Acta Phys. Sin. 70 127801
Google Scholar
[28] Boix Constant C, Mañas Valero S, Córdoba R, Coronado E 2021 Adv. Electron. Mater. 7 2000987
Google Scholar
[29] Pan J, Guo C, Song C, Lai X, Li H, Zhao W, Zhang H, Mu G, Bu K, Lin T, Xie X, Chen M, Huang F 2017 J. Am. Chem. Soc. 139 4623
Google Scholar
[30] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427
Google Scholar
[31] Yang Y, Fang S, Fatemi V, Ruhman J, Navarro Moratalla E, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Phys. Rev. B 98 035203
Google Scholar
[32] Naik S, Kalaiarasan S, Nath R C, Sarangi S N, Sahu A K, Samal D, Biswal H S, Samal S L 2021 Inorg. Chem. 60 4588
Google Scholar
[33] Husremović S, Groschner C K, Inzani K, Craig I M, Bustillo K C, Ercius P, Kazmierczak N P, Syndikus J, Van Winkle M, Aloni S, Taniguchi T, Watanabe K, Griffin S M, Bediako D K 2022 J. Am. Chem. Soc. 144 12167
Google Scholar
[34] Fang Y, Pan J, He J, Luo R, Wang D, Che X, Bu K, Zhao W, Liu P, Mu G, Zhang H, Lin T, Huang F 2018 Angew. Chem. Int. Ed. 57 1232
Google Scholar
[35] Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, Xie Y 2019 Adv. Mater. 31 1900568
Google Scholar
[36] He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605
Google Scholar
[37] Ge J F, Liu Z L, Liu C h, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285
Google Scholar
[38] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K, Wang J 2017 Nano Lett. 17 6802
Google Scholar
[39] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[40] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52
Google Scholar
[41] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003
Google Scholar
[42] Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914
Google Scholar
[43] Geim A K, Novoselov K S 2009 Nanosci. Technol. (Co-Published with Macmillan Publishers Ltd, UK) pp11–19
[44] Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923
Google Scholar
[45] Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265
Google Scholar
[46] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo Herrero P 2018 Nature 556 80
Google Scholar
[47] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774
Google Scholar
[48] Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434
Google Scholar
[49] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861
Google Scholar
[50] Lee J, Lee W, Kim G Y, Choi Y B, Park J, Jang S, Gu G, Choi S Y, Cho G Y, Lee G H, Lee H J 2021 Nano Lett. 21 10469
Google Scholar
[51] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322
Google Scholar
[52] VahidMohammadi A, Rosen J, Gogotsi Y 2021 Science 372 eabf1581
Google Scholar
[53] Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W, Rosen J 2015 Scr. Mater. 108 147
Google Scholar
[54] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
Google Scholar
[55] Wang T, Tian X, Yang Y, Li Y W, Wang J, Beller M, Jiao H 2016 Surf. Sci. 651 195
Google Scholar
[56] Zhang J J, Dong S 2017 J. Chem. Phys. 146 034705
Google Scholar
[57] Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135
Google Scholar
[58] Soundiraraju B, George B K 2017 ACS Nano 11 8892
Google Scholar
[59] Aretouli K E, Tsoutsou D, Tsipas P, Marquez Velasco J, Aminalragia Giamini S, Kelaidis N, Psycharis V, Dimoulas A 2016 Appl. Mater. Interfaces 8 23222
Google Scholar
[60] Zheng R J 2017 Ph. D. Dissertation (Riverside: University of California)
[61] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2015 Nat. Phys. 12 92
Google Scholar
[62] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563
Google Scholar
[63] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513
Google Scholar
[64] Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P, Wu X, Wu K, Chen L 2022 Nat. Chem. 14 25
Google Scholar
[65] Chen F, Wang Y, Su W, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519
Google Scholar
[66] Choudhary N, Park J, Hwang J Y, Choi W 2014 ACS Appl. Mater. Interfaces 6 21215
Google Scholar
[67] Hsieh Y T, Huang M W, Chang C C, Chen U S, Shih H C 2010 Thin Solid Films 519 1668
Google Scholar
[68] Yang M, Guo Y, Wang Q, Xie J 2014 J. Nanopart. Res. 16 2598
Google Scholar
[69] Li F, Feng Y, Li Z, Ma C, Qu J, Wu X, Li D, Zhang X, Yang T, He Y, Li H, Hu X, Fan P, Chen Y, Zheng B, Zhu X, Wang X, Duan X, Pan A 2019 Adv. Mater. 31 1901351
Google Scholar
[70] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, Wang X, He H, Tsang S H, Gao W, Suenaga K, Ma F, Yang C, Lu L, Yu T, Teo E H T, Liu G, Liu Z 2017 Nat. Commun. 8 394
Google Scholar
[71] Zheliuk O, Lu J, Yang J, Ye J 2017 Phys. Status Solidi Rapid Res. Lett. 11 1700245
Google Scholar
[72] Deng Y, Lai Y, Zhao X, Wang X, Zhu C, Huang K, Zhu C, Zhou J, Zeng Q, Duan R, Fu Q, Kang L, Liu Y, Pennycook S J, Wang X R, Liu Z 2020 J. Am. Chem. Soc. 142 2948
Google Scholar
[73] Xu C, Song S, Liu Z, Chen L, Wang L, Fan D, Kang N, Ma X, Cheng H M, Ren W 2017 ACS Nano 11 5906
Google Scholar
[74] Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J, Gao L 2019 Nat. Mater. 18 602
Google Scholar
[75] Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Chem. Res. 2 36
Google Scholar
[76] Wu C R, Chang X R, Chang S W, Chang C E, Wu C H, Lin S Y 2015 J. Phys. D 48 435101
Google Scholar
[77] Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457
Google Scholar
[78] Liu C, Singh O G, Joensen P, Curzon A E, Frindt R F 1984 Thin Solid Films 113 165
Google Scholar
[79] Ohashi Y, Koizumi T, Yoshikawa T, Hironaka T, Shiiki K 1997 Tanso 1997 235
Google Scholar
[80] Zhang Y, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803
Google Scholar
[81] Wang L 2014 Ph. D. Dissertation (New York: Columbia University)
[82] Wang S, Yu Y, Hao J, Feng Y, Zhu J, Lin Y, Xiang B, Ru H, Pan Y, Gu G 2021 arXiv: 2112.04782
[83] Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang S J, Cui Y, Hwang H Y, Yuan H, Miao F 2018 Nano Lett. 18 1410
Google Scholar
[84] Liu F 2021 Prog. Surf. Sci. 96 100626
Google Scholar
[85] Li Z, Ren L, Wang S, Huang X, Li Q, Lu Z, Ding S, Deng H, Chen P, Lin J, Hu Y, Liao L, Liu Y 2021 ACS Nano 15 13839
Google Scholar
[86] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453
Google Scholar
[87] Lin Z, Wan Z, Song F, Huang B, Jia C, Qian Q, Kang J S, Wu Y, Yan X, Peng L, Wan C, Zhou J, Sofer Z, Shakir I, Almutairi Z, Tolbert S, Pan X, Hu Y, Huang Y, Duan X 2021 Chem 7 1887
Google Scholar
[88] Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D, Zeng Z 2022 Nat. Protoc. 17 358
Google Scholar
[89] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612
Google Scholar
[90] Muratore C, Voevodin A A, Glavin N R 2019 Thin Solid Films 688 137500
Google Scholar
[91] Greene J E 2017 J. Vac. Sci. Technol. A 35 05C204
Google Scholar
[92] Liu X, Hersam M C 2018 Adv. Mater. 30 1801586
Google Scholar
[93] Tanzi M C, Farè S, Candiani G (Tanzi M C et al. ed) 2019 Foundations of Biomaterials Engineering (Academic Press) pp393–469
[94] Li J, Song P, Zhao J, Vaklinova K, Zhao X, Li Z, Qiu Z, Wang Z, Lin L, Zhao M, Herng T S, Zuo Y, Jonhson W, Yu W, Hai X, Lyu P, Xu H, Yang H, Chen C, Pennycook S J, Ding J, Teng J, Castro Neto A H, Novoselov K S, Lu J 2021 Nat. Mater. 20 181
Google Scholar
[95] Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S, Li S C 2022 Nat. Mater. 21 284
Google Scholar
[96] Crommie M F, Lutz C P, Eigler D M 1993 Science 262 218
Google Scholar
[97] Shao G, Xue X X, Liu X, Zhang D, Jin Y, Wu Y, You B, Lin Y C, Li S, Suenaga K, Wang X, Pan A, Li H, Hong J, Feng Y, Liu S 2020 Chem. Mater. 32 9721
Google Scholar
[98] Gariglio S, Reyren N, Caviglia A D, Triscone J M 2009 J. Phys. Condens. Matter 21 164213
Google Scholar
[99] Sun W, Wang X, Feng J, Li T, Huan Y, Qiao J, He L, Ma D 2019 Nanotechnology 30 385601
Google Scholar
[100] Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A 2015 J. Vac. Sci. Technol. 33 060604
Google Scholar
[101] Gfroerer T H 2000 Encyclopedia of Analytical Chemistry (Chichester: Wiley) pp9201–9231
[102] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[103] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
Google Scholar
[104] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791
Google Scholar
[105] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. U. S. A 111 6198
Google Scholar
[106] Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153
Google Scholar
[107] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, Liu G 2019 Nat. Commun. 10 2044
Google Scholar
[108] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385
Google Scholar
[109] Berkdemir A, Gutiérrez H R, Botello Méndez A R, Perea López N, Elías A L, Chia C I, Wang B, Crespi V H, López Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755
Google Scholar
[110] Lui C H, Li Z, Chen Z, Klimov P V, Brus L E, Heinz T F 2011 Nano Lett. 11 164
Google Scholar
[111] Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J, Tan P H 2016 Carbon 99 118
Google Scholar
[112] Hou Y, Ren X, Fan J, Wang G, Dai Z, Jin C, Wang W, Zhu Y, Zhang S, Liu L, Zhang Z 2020 ACS Appl. Mater. Interfaces 12 40958
Google Scholar
[113] Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181
Google Scholar
[114] Berezinskiǐ V L 1972 Sov. J. Exp. Theor. Phys. 34 610
[115] Lake B, Rønnow H M, Christensen N B, Aeppli G, Lefmann K, McMorrow D F, Vorderwisch P, Smeibidl P, Mangkorntong N, Sasagawa T, Nohara M, Takagi H, Mason T E 2002 Nature 415 299
Google Scholar
[116] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624
Google Scholar
[117] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
Google Scholar
[118] An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y, Wang N 2020 Nanoscale Horiz. 5 1309
Google Scholar
[119] Scheurer M S, Samajdar R 2020 Phys. Rev. Res. 2 033062
Google Scholar
[120] Nishino T, Yamada E, Kawabe U 1986 Phys. Rev. B 33 2042
Google Scholar
[121] Tal O, Rosenwaks Y, Preezant Y, Tessler N, Chan C K, Kahn A 2005 Phys. Rev. Lett. 95 256405
Google Scholar
[122] Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001
Google Scholar
[123] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136
Google Scholar
[124] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
Google Scholar
[125] Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855
Google Scholar
[126] Dhoot A S, Yuen J D, Heeney M, McCulloch I, Moses D, Heeger A J 2006 Proc. Natl. Acad. Sci. U. S. A. 103 11834
Google Scholar
[127] Simon P, Gogotsi Y 2008 Nat. Mater. 7 845
Google Scholar
[128] Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y 2008 Appl. Phys. Lett. 92 242107
Google Scholar
[129] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193
Google Scholar
[130] Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y 2009 Adv. Funct. Mater. 19 1046
Google Scholar
[131] Lin Z, Taberna P L, Simon P 2016 Electrochim. Acta 206 446
Google Scholar
[132] Han S, Song C L, Ma X C, Xue Q K 2021 C. R. Phys. 22 163
Google Scholar
[133] He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J, Sou I K 2014 Nat. Commun. 5 4247
Google Scholar
[134] Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969
Google Scholar
[135] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
Google Scholar
[136] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nat. Phys. 6 104
Google Scholar
[137] Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98 220504
Google Scholar
[138] Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 590 249
Google Scholar
[139] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76
Google Scholar
[140] Cao Y, Rodan Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo Herrero P 2021 Science 372 264
Google Scholar
[141] Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 592 43
Google Scholar
-
图 2 过渡金属硫族化合物材料的结构 (a) 2H-NbSe2的原子结构示意图[32]; (b) 2H-TaS2的原子结构示意图[33]; (c) 1T-MoS2的原子结构示意图[34]; (d) 1T-MoS2电阻率与温度的依赖关系[34]
Fig. 2. Structures of TMDCs: (a) Schematics of the atomic structure of 2H-NbSe2[32]; (b) schematics of the atomic structure of 2H-TaS2[33]; (c) schematics of the atomic structure of 1T-MoS2[34]; (d) temperature dependence of electrical resistivity of 1T-MoS2[34].
图 4 CVD法制备示意图与超导性质 (a) 控制合成3R-TaSe2原子层的反应腔示意图[72]; (b) CVD法直接生长graphene/2D α-Mo2C晶体异质结的过程示意图[73]; (c) 3R-TaSe2超导电性, 其超导转变温度Tc = 1.6 K[72]; (d) 石墨烯/Mo2C异质结在T = 100 mK时的夫琅禾费衍射图像, 深蓝色区域对应于零电阻状态, 虚线标记临界电流Ic的变化曲线表现磁场的调制作用[73]
Fig. 4. Schematics of the CVD method and characteristics of 2D superconductors: (a) Schematic of the reaction chamber for the controlled synthesis of TaSe2 atomic layers[72]; (b) direct growth of graphene/2D α-Mo2C heterostructures by CVD method[73]; (c) superconductivities of 3R-TaSe2, Tc = 1.6 K[72]; (d) Fraunhofer-like diffraction pattern of graphene/Mo2C heterostructure measured at 100 mK. The dark blue regions correspond to the zero-resistance state. The critical current Ic, denoted by the dashed lines, exhibits a modulation as a function of magnetic fields[73].
图 5 层状晶体的机械剥离过程示意图[89] (a) SiO2/Si基底和与带有石墨薄片的胶带的光学图像; (b) 氧等离子体清洗SiO2/Si基底; (c) 石墨胶带与基底表面接触, 然后放在热板上, 在空气中以100 ℃加热2 min; (d) 将基底从热板上移除, 并剥落胶带; (e) 石墨烯剥离后的基底光学图像; (f) 基片上石墨烯薄层的光学显微图, 薄层的厚度在1—4层之间呈阶梯变化
Fig. 5. Illustration of the exfoliation process for layered crystals[89]: (a) Optical image of the SiO2/Si substrate and adhesive tape with graphite flakes; (b) oxygen plasma cleaning of the SiO2/Si substrate; (c) the graphite tape contacts the substrate, and then heat the substrate (with tape) on a hot plate at ~100 ℃ in air for 2 min; (d) removal of the substrate from the hot plate and peeling off of the tape; (e) optical image of the substrate after graphene exfoliation; (f) optical micrograph of one of the graphene flakes on the substrate in panel (e), the flake has a thickness varying in steps between 1–4 layers.
图 6 STM, AFM和S/TEM的示意图[92] (a) 具有H2功能化的STM示意图, 以及电子隧穿过程, H2可以提高空间分辨率. (b) 具有 CO 分子功能化的AFM示意图, 以及尖端和样品之间的范德瓦耳斯相互作用曲线. 红色和绿色区域分别对应于排斥作用和吸引作用. (c) STEM和TEM示意图. STEM使用聚焦电子束(紫色), TEM使用准直电子束(粉红色)
Fig. 6. Schematic of STM, AFM and S/TEM[92]: (a) Schematic of STM with hydrogen functionalization, and electron tunneling process; (b) schematic of AFM with CO molecule functionalization, and the van der Waals interaction between the tip and sample; the red and green regions correspond to repulsive and attractive mode AFM, respectively; (c) schematic of STEM and TEM. STEM utilizes a focused electron beam (purple), whereas TEM uses a collimated beam (pink).
图 7 WS2的结构示意图和原子力显微镜图像[97] (a) 通过杂质原子Sn的辅助调控得到的WS2示意图以及两种WS2样品的光镜图, 有Sn原子, 表现出60°堆叠, 无Sn原子, 表现出0°堆叠, 比例尺为10 μm; (b) 1L—6L WS2的AFM图像, 比例尺为5 μm
Fig. 7. Schematics of WS2 structure and AFM images[97]: (a) Schematics of the regulated growth of 0° stacking WS2 without Sn and 60° stacking WS2 with Sn and optical images of 0° and 60° stacking bilayer WS2. Scale bar: 10 μm[97]. (b) AFM images of 1L to 6L WS2. Scale bar: 5 μm.
图 8 透射电子显微镜图像[73] (a) 三角形、六角形、八角形和非角形2D α-Mo2C晶体的石墨烯异质结构的亮场透射电子显微镜图像(比例尺为200 nm); (b) 2D α-Mo2C样品区域的电子衍射图案, 显示存在两组六角周期结构, 红点对应2D α-Mo2C晶体, 绿圈对应单层石墨烯, 比例尺为200 nm
Fig. 8. Schematics of TEM: (a) Bright-field TEM images of the heterostructures of graphene with triangular, hexagonal, octagonal, and nonagonal 2D α-Mo2C crystals (Scale bars: 200 nm)[73]; (b) selected area electron diffraction patterns taken from the regions with 2D α-Mo2C in (a), showing two sets of patterns corresponding to 2D α-Mo2C (marked by red dots) and monolayer graphene (marked by green circles) with the same lattice orientation (marked by red arrows) for each case, scale bars: 200 nm[73].
图 9 不同叠加模式下的SHG响应[97] (a) 0°和60°叠加WS2的SHG图像, 插图为相应的光学图像, 比例尺为5 μm; (b) 激发功率相关的SHG强度; (c) 拟合斜率为1.99的双对数图; (d) 0和60°堆叠WS2的SHG强度随层数的变化
Fig. 9. SHG responses corresponding to the different stacking modes[97]: (a) SHG images of 0° and 60° stacking WS2 ( Inset: the corresponding optical images. Scale bars: 5 μm); (b) excitation power-dependent SHG intensity; (c) double logarithmic plot with the fitting slope of 1.99; (d) SHG intensity of 0° and 60° stacking WS2 as a function of layer number.
图 11 FeSe薄膜基底的影响[134] (a) K/FeSe/STO的STM形貌图, 该样品是以SrTiO3(001)为基底, 通过K原子掺杂的2 UC FeSe薄膜, K的覆盖率是0.163 ML (monolayer, ML), 插图为K/FeSe/STO的典型隧穿dI/dV曲线, 显示存在较大的超导间隙(~15 meV); (b) 在SrTiO3和石墨化的SiC基底上的FeSe薄膜, 得到的超导间隙随薄膜厚度的演化, 间隙的大小取自不同位置的5—10个谱线的平均, 绿线显示块体FeSe的超导间隙
Fig. 11. Effects of substrate on the superconductivity of epitaxial FeSe films[134]: (a) Topographic images of K/FeSe/STO sample, the K doped 2 UC FeSe films is grown on SrTiO3 (001) substrates, the K coverage is 0.163 ML; Insert: Typical tunneling conductance (dI/dV) curves taken on the 2 UC FeSe/SrTiO3 films indicates a optimized superconducting gap (~15 meV); (b) evolution of optimal SC gaps for different thickness of FeSe films on SrTiO3 and graphitized SiC. The gap size is obtained by averaging 5–10 spectra taken at different locations. Green dashed line indicates the SC gap of bulk FeSe (2.2 meV).
-
[1] van Delft D, Kes P 2010 Physics Today 63 38
Google Scholar
[2] Bardeen J, Cooper L N, Schrieffer J R 1957 Phys. Rev. 108 1175
Google Scholar
[3] Hahn S, Kim K, Kim K, Hu X, Painter T, Dixon I, Kim S, Bhattarai K R, Noguchi S, Jaroszynski J, Larbalestier D C 2019 Nature 570 496
Google Scholar
[4] 熊嘉阳, 邓自刚 2021 交通运输工程学报 21 177
Google Scholar
Xiong J Y, Deng Z G 2021 J. Traffic Transport. Eng. 21 177
Google Scholar
[5] Mott N F 1968 Philos. Mag. 17 1259
Google Scholar
[6] Strongin M, Thompson R S, Kammerer O F, Crow J E 1970 Phys. Rev. B 1 1078
Google Scholar
[7] Uchihashi T 2016 Supercond. Sci. Technol. 30 013002
Google Scholar
[8] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666
Google Scholar
[9] Geim A K, Novoselov K S 2007 Nat. Mater. 6 183
Google Scholar
[10] Wang Q, Zhang W, Wang L, He K, Ma X, Xue Q 2013 J. Phys. Condens. Matter 25 095002
Google Scholar
[11] Novoselov K S, Mishchenko A, Carvalho A, Castro Neto A H 2016 Science 353 aac9439
Google Scholar
[12] Kim K, Yankowitz M, Fallahazad B, Kang S, Movva H C P, Huang S, Larentis S, Corbet C M, Taniguchi T, Watanabe K, Banerjee S K, LeRoy B J, Tutuc E 2016 Nano Lett. 16 1989
Google Scholar
[13] 王浩林, 宗其军, 黄焱, 陈以威, 朱雨剑, 魏凌楠, 王雷 2021 70 138202
Google Scholar
Wang H L, Zong Q J, Huang Y, Chen Y W, Zhu Y J, Wei L N, Wang L 2021 Acta Phys. Sin. 70 138202
Google Scholar
[14] Cao Y, Fatemi V, Fang S, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Nature 556 43
Google Scholar
[15] Xi X, Wang Z, Zhao W, Park J H, Law K T, Berger H, Forró L, Shan J, Mak K F 2016 Nat. Phys. 12 139
Google Scholar
[16] Wang Q Y, Li Z, Zhang W H, Zhang Z C, Zhang J S, Li W, Ding H, Ou Y B, Deng P, Chang K, Wen J, Song C L, He K, Jia J F, Ji S H, Wang Y Y, Wang L L, Chen X, Ma X C, Xue Q K 2012 Chin. Phys. Lett. 29 037402
Google Scholar
[17] Peng L, Yuan Y, Li G, Yang X, Xian J J, Yi C J, Shi Y G, Fu Y S 2017 Nat. Commun. 8 659
Google Scholar
[18] Bussmann Holder A, Keller H 2020 Z. Naturforsch. B. 75 3
Google Scholar
[19] Liu G, Bao X, Dong W, Wei Q, Mu H, Zhu W, Wang B, Li J, Shabbir B, Huang Y, Xing G, Yu J, Gao P, Shao H, Li X, Bao Q 2021 ACS Nano 15 8919
Google Scholar
[20] Qiu D, Gong C, Wang S, Zhang M, Yang C, Wang X, Xiong J 2021 Adv. Mater. 33 2006124
Google Scholar
[21] Kharissova O V, Kopnin E M, Maltsev V V, Leonyuk N I, León Rossano L M, Pinus I Y, Kharisov B I 2014 Crit. Rev. Solid State Mater. Sci. 39 253
Google Scholar
[22] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V, Geim A K 2005 Proc. Natl. Acad. Sci. U. S. A. 102 10451
Google Scholar
[23] Jiang D, Hu T, You L, Li Q, Li A, Wang H, Mu G, Chen Z, Zhang H, Yu G, Zhu J, Sun Q, Lin C, Xiao H, Xie X, Jiang M 2014 Nat. Commun. 5 5708
Google Scholar
[24] Yu Y, Ma L, Cai P, Zhong R, Ye C, Shen J, Gu G D, Chen X H, Zhang Y B 2019 Nature 575 156
Google Scholar
[25] Lee K H, Hoffmann R 2006 J. Phys. Chem. A 110 609
Google Scholar
[26] Gozar A, Logvenov G, Kourkoutis L F, Bollinger A T, Giannuzzi L A, Muller D A, Bozovic I 2008 Nature 455 782
Google Scholar
[27] 蒋小红, 秦泗晨, 幸子越, 邹星宇, 邓一帆, 王伟, 王琳 2021 70 127801
Google Scholar
Jiang X H, Qin S C, Xing Z Y, Zou X Y, Deng Y F, Wang W, Wang L 2021 Acta Phys. Sin. 70 127801
Google Scholar
[28] Boix Constant C, Mañas Valero S, Córdoba R, Coronado E 2021 Adv. Electron. Mater. 7 2000987
Google Scholar
[29] Pan J, Guo C, Song C, Lai X, Li H, Zhao W, Zhang H, Mu G, Bu K, Lin T, Xie X, Chen M, Huang F 2017 J. Am. Chem. Soc. 139 4623
Google Scholar
[30] de la Barrera S C, Sinko M R, Gopalan D P, Sivadas N, Seyler K L, Watanabe K, Taniguchi T, Tsen A W, Xu X, Xiao D, Hunt B M 2018 Nat. Commun. 9 1427
Google Scholar
[31] Yang Y, Fang S, Fatemi V, Ruhman J, Navarro Moratalla E, Watanabe K, Taniguchi T, Kaxiras E, Jarillo Herrero P 2018 Phys. Rev. B 98 035203
Google Scholar
[32] Naik S, Kalaiarasan S, Nath R C, Sarangi S N, Sahu A K, Samal D, Biswal H S, Samal S L 2021 Inorg. Chem. 60 4588
Google Scholar
[33] Husremović S, Groschner C K, Inzani K, Craig I M, Bustillo K C, Ercius P, Kazmierczak N P, Syndikus J, Van Winkle M, Aloni S, Taniguchi T, Watanabe K, Griffin S M, Bediako D K 2022 J. Am. Chem. Soc. 144 12167
Google Scholar
[34] Fang Y, Pan J, He J, Luo R, Wang D, Che X, Bu K, Zhao W, Liu P, Mu G, Zhang H, Lin T, Huang F 2018 Angew. Chem. Int. Ed. 57 1232
Google Scholar
[35] Peng J, Liu Y, Luo X, Wu J, Lin Y, Guo Y, Zhao J, Wu X, Wu C, Xie Y 2019 Adv. Mater. 31 1900568
Google Scholar
[36] He S, He J, Zhang W, Zhao L, Liu D, Liu X, Mou D, Ou Y B, Wang Q Y, Li Z, Wang L, Peng Y, Liu Y, Chen C, Yu L, Liu G, Dong X, Zhang J, Chen C, Xu Z, Chen X, Ma X, Xue Q, Zhou X J 2013 Nat. Mater. 12 605
Google Scholar
[37] Ge J F, Liu Z L, Liu C h, Gao C L, Qian D, Xue Q K, Liu Y, Jia J F 2015 Nat. Mater. 14 285
Google Scholar
[38] Xing Y, Zhao K, Shan P, Zheng F, Zhang Y, Fu H, Liu Y, Tian M, Xi C, Liu H, Feng J, Lin X, Ji S, Chen X, Xue Q K, Wang J 2017 Nano Lett. 17 6802
Google Scholar
[39] Xu J P, Wang M X, Liu Z L, Ge J F, Yang X, Liu C, Xu Z A, Guan D, Gao C L, Qian D, Liu Y, Wang Q H, Zhang F C, Xue Q K, Jia J F 2015 Phys. Rev. Lett. 114 017001
Google Scholar
[40] Wang M X, Liu C, Xu J P, Yang F, Miao L, Yao M Y, Gao C L, Shen C, Ma X, Chen X, Xu Z A, Liu Y, Zhang S C, Qian D, Jia J F, Xue Q K 2012 Science 336 52
Google Scholar
[41] Sun H H, Zhang K W, Hu L H, Li C, Wang G Y, Ma H Y, Xu Z A, Gao C L, Guan D D, Li Y Y, Liu C, Qian D, Zhou Y, Fu L, Li S C, Zhang F C, Jia J F 2016 Phys. Rev. Lett. 116 257003
Google Scholar
[42] Cao Y, Mishchenko A, Yu G L, Khestanova E, Rooney A P, Prestat E, Kretinin A V, Blake P, Shalom M B, Woods C, Chapman J, Balakrishnan G, Grigorieva I V, Novoselov K S, Piot B A, Potemski M, Watanabe K, Taniguchi T, Haigh S J, Geim A K, Gorbachev R V 2015 Nano Lett. 15 4914
Google Scholar
[43] Geim A K, Novoselov K S 2009 Nanosci. Technol. (Co-Published with Macmillan Publishers Ltd, UK) pp11–19
[44] Dai S, Xiang Y, Srolovitz D J 2016 Nano Lett. 16 5923
Google Scholar
[45] Andrei E Y, MacDonald A H 2020 Nat. Mater. 19 1265
Google Scholar
[46] Cao Y, Fatemi V, Demir A, Fang S, Tomarken S L, Luo J Y, Sanchez Yamagishi J D, Watanabe K, Taniguchi T, Kaxiras E, Ashoori R C, Jarillo Herrero P 2018 Nature 556 80
Google Scholar
[47] Zhou H, Holleis L, Saito Y, Cohen L, Huynh W, Patterson C L, Yang F, Taniguchi T, Watanabe K, Young A F 2022 Science 375 774
Google Scholar
[48] Zhou H, Xie T, Taniguchi T, Watanabe K, Young A F 2021 Nature 598 434
Google Scholar
[49] Wang L, Shih E M, Ghiotto A, Xian L, Rhodes D A, Tan C, Claassen M, Kennes D M, Bai Y, Kim B, Watanabe K, Taniguchi T, Zhu X, Hone J, Rubio A, Pasupathy A N, Dean C R 2020 Nat. Mater. 19 861
Google Scholar
[50] Lee J, Lee W, Kim G Y, Choi Y B, Park J, Jang S, Gu G, Choi S Y, Cho G Y, Lee G H, Lee H J 2021 Nano Lett. 21 10469
Google Scholar
[51] Naguib M, Mashtalir O, Carle J, Presser V, Lu J, Hultman L, Gogotsi Y, Barsoum M W 2012 ACS Nano 6 1322
Google Scholar
[52] VahidMohammadi A, Rosen J, Gogotsi Y 2021 Science 372 eabf1581
Google Scholar
[53] Meshkian R, Näslund L Å, Halim J, Lu J, Barsoum M W, Rosen J 2015 Scr. Mater. 108 147
Google Scholar
[54] Naguib M, Mochalin V N, Barsoum M W, Gogotsi Y 2014 Adv. Mater. 26 992
Google Scholar
[55] Wang T, Tian X, Yang Y, Li Y W, Wang J, Beller M, Jiao H 2016 Surf. Sci. 651 195
Google Scholar
[56] Zhang J J, Dong S 2017 J. Chem. Phys. 146 034705
Google Scholar
[57] Xu C, Wang L, Liu Z, Chen L, Guo J, Kang N, Ma X L, Cheng H M, Ren W 2015 Nat. Mater. 14 1135
Google Scholar
[58] Soundiraraju B, George B K 2017 ACS Nano 11 8892
Google Scholar
[59] Aretouli K E, Tsoutsou D, Tsipas P, Marquez Velasco J, Aminalragia Giamini S, Kelaidis N, Psycharis V, Dimoulas A 2016 Appl. Mater. Interfaces 8 23222
Google Scholar
[60] Zheng R J 2017 Ph. D. Dissertation (Riverside: University of California)
[61] Ugeda M M, Bradley A J, Zhang Y, Onishi S, Chen Y, Ruan W, Ojeda Aristizabal C, Ryu H, Edmonds M T, Tsai H Z, Riss A, Mo S K, Lee D, Zettl A, Hussain Z, Shen Z X, Crommie M F 2015 Nat. Phys. 12 92
Google Scholar
[62] Feng B, Zhang J, Zhong Q, Li W, Li S, Li H, Cheng P, Meng S, Chen L, Wu K 2016 Nat. Chem. 8 563
Google Scholar
[63] Mannix A J, Zhou X F, Kiraly B, Wood J D, Alducin D, Myers B D, Liu X, Fisher B L, Santiago U, Guest J R, Yacaman M J, Ponce A, Oganov A R, Hersam M C, Guisinger N P 2015 Science 350 1513
Google Scholar
[64] Chen C, Lv H, Zhang P, Zhuo Z, Wang Y, Ma C, Li W, Wang X, Feng B, Cheng P, Wu X, Wu K, Chen L 2022 Nat. Chem. 14 25
Google Scholar
[65] Chen F, Wang Y, Su W, Ding S, Fu L 2019 J. Phys. Chem. C 123 30519
Google Scholar
[66] Choudhary N, Park J, Hwang J Y, Choi W 2014 ACS Appl. Mater. Interfaces 6 21215
Google Scholar
[67] Hsieh Y T, Huang M W, Chang C C, Chen U S, Shih H C 2010 Thin Solid Films 519 1668
Google Scholar
[68] Yang M, Guo Y, Wang Q, Xie J 2014 J. Nanopart. Res. 16 2598
Google Scholar
[69] Li F, Feng Y, Li Z, Ma C, Qu J, Wu X, Li D, Zhang X, Yang T, He Y, Li H, Hu X, Fan P, Chen Y, Zheng B, Zhu X, Wang X, Duan X, Pan A 2019 Adv. Mater. 31 1901351
Google Scholar
[70] Wang H, Huang X, Lin J, Cui J, Chen Y, Zhu C, Liu F, Zeng Q, Zhou J, Yu P, Wang X, He H, Tsang S H, Gao W, Suenaga K, Ma F, Yang C, Lu L, Yu T, Teo E H T, Liu G, Liu Z 2017 Nat. Commun. 8 394
Google Scholar
[71] Zheliuk O, Lu J, Yang J, Ye J 2017 Phys. Status Solidi Rapid Res. Lett. 11 1700245
Google Scholar
[72] Deng Y, Lai Y, Zhao X, Wang X, Zhu C, Huang K, Zhu C, Zhou J, Zeng Q, Duan R, Fu Q, Kang L, Liu Y, Pennycook S J, Wang X R, Liu Z 2020 J. Am. Chem. Soc. 142 2948
Google Scholar
[73] Xu C, Song S, Liu Z, Chen L, Wang L, Fan D, Kang N, Ma X, Cheng H M, Ren W 2017 ACS Nano 11 5906
Google Scholar
[74] Lin H, Zhu Q, Shu D, Lin D, Xu J, Huang X, Shi W, Xi X, Wang J, Gao L 2019 Nat. Mater. 18 602
Google Scholar
[75] Tang L, Tan J, Nong H, Liu B, Cheng H M 2021 Acc. Chem. Res. 2 36
Google Scholar
[76] Wu C R, Chang X R, Chang S W, Chang C E, Wu C H, Lin S Y 2015 J. Phys. D 48 435101
Google Scholar
[77] Joensen P, Frindt R F, Morrison S R 1986 Mater. Res. Bull. 21 457
Google Scholar
[78] Liu C, Singh O G, Joensen P, Curzon A E, Frindt R F 1984 Thin Solid Films 113 165
Google Scholar
[79] Ohashi Y, Koizumi T, Yoshikawa T, Hironaka T, Shiiki K 1997 Tanso 1997 235
Google Scholar
[80] Zhang Y, Small J P, Amori M E S, Kim P 2005 Phys. Rev. Lett. 94 176803
Google Scholar
[81] Wang L 2014 Ph. D. Dissertation (New York: Columbia University)
[82] Wang S, Yu Y, Hao J, Feng Y, Zhu J, Lin Y, Xiang B, Ru H, Pan Y, Gu G 2021 arXiv: 2112.04782
[83] Zeng J, Liu E, Fu Y, Chen Z, Pan C, Wang C, Wang M, Wang Y, Xu K, Cai S, Yan X, Wang Y, Liu X, Wang P, Liang S J, Cui Y, Hwang H Y, Yuan H, Miao F 2018 Nano Lett. 18 1410
Google Scholar
[84] Liu F 2021 Prog. Surf. Sci. 96 100626
Google Scholar
[85] Li Z, Ren L, Wang S, Huang X, Li Q, Lu Z, Ding S, Deng H, Chen P, Lin J, Hu Y, Liao L, Liu Y 2021 ACS Nano 15 13839
Google Scholar
[86] Huang Y, Pan Y H, Yang R, Bao L H, Meng L, Luo H L, Cai Y Q, Liu G D, Zhao W J, Zhou Z, Wu L M, Zhu Z L, Huang M, Liu L W, Liu L, Cheng P, Wu K H, Tian S B, Gu C Z, Shi Y G, Guo Y F, Cheng Z G, Hu J P, Zhao L, Yang G H, Sutter E, Sutter P, Wang Y L, Ji W, Zhou X J, Gao H J 2020 Nat. Commun. 11 2453
Google Scholar
[87] Lin Z, Wan Z, Song F, Huang B, Jia C, Qian Q, Kang J S, Wu Y, Yan X, Peng L, Wan C, Zhou J, Sofer Z, Shakir I, Almutairi Z, Tolbert S, Pan X, Hu Y, Huang Y, Duan X 2021 Chem 7 1887
Google Scholar
[88] Yang R, Mei L, Zhang Q, Fan Y, Shin H S, Voiry D, Zeng Z 2022 Nat. Protoc. 17 358
Google Scholar
[89] Huang Y, Sutter E, Shi N N, Zheng J, Yang T, Englund D, Gao H J, Sutter P 2015 ACS Nano 9 10612
Google Scholar
[90] Muratore C, Voevodin A A, Glavin N R 2019 Thin Solid Films 688 137500
Google Scholar
[91] Greene J E 2017 J. Vac. Sci. Technol. A 35 05C204
Google Scholar
[92] Liu X, Hersam M C 2018 Adv. Mater. 30 1801586
Google Scholar
[93] Tanzi M C, Farè S, Candiani G (Tanzi M C et al. ed) 2019 Foundations of Biomaterials Engineering (Academic Press) pp393–469
[94] Li J, Song P, Zhao J, Vaklinova K, Zhao X, Li Z, Qiu Z, Wang Z, Lin L, Zhao M, Herng T S, Zuo Y, Jonhson W, Yu W, Hai X, Lyu P, Xu H, Yang H, Chen C, Pennycook S J, Ding J, Teng J, Castro Neto A H, Novoselov K S, Lu J 2021 Nat. Mater. 20 181
Google Scholar
[95] Zhao W M, Zhu L, Nie Z, Li Q Y, Wang Q W, Dou L G, Hu J G, Xian L, Meng S, Li S C 2022 Nat. Mater. 21 284
Google Scholar
[96] Crommie M F, Lutz C P, Eigler D M 1993 Science 262 218
Google Scholar
[97] Shao G, Xue X X, Liu X, Zhang D, Jin Y, Wu Y, You B, Lin Y C, Li S, Suenaga K, Wang X, Pan A, Li H, Hong J, Feng Y, Liu S 2020 Chem. Mater. 32 9721
Google Scholar
[98] Gariglio S, Reyren N, Caviglia A D, Triscone J M 2009 J. Phys. Condens. Matter 21 164213
Google Scholar
[99] Sun W, Wang X, Feng J, Li T, Huan Y, Qiao J, He L, Ma D 2019 Nanotechnology 30 385601
Google Scholar
[100] Wu R J, Topsakal M, Low T, Robbins M C, Haratipour N, Jeong J S, Wentzcovitch R M, Koester S J, Mkhoyan K A 2015 J. Vac. Sci. Technol. 33 060604
Google Scholar
[101] Gfroerer T H 2000 Encyclopedia of Analytical Chemistry (Chichester: Wiley) pp9201–9231
[102] Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105 136805
Google Scholar
[103] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G, Wang F 2010 Nano Lett. 10 1271
Google Scholar
[104] Zhao W, Ghorannevis Z, Chu L, Toh M, Kloc C, Tan P H, Eda G 2013 ACS Nano 7 791
Google Scholar
[105] Fang H, Battaglia C, Carraro C, Nemsak S, Ozdol B, Kang J S, Bechtel H A, Desai S B, Kronast F, Unal A A, Conti G, Conlon C, Palsson G K, Martin M C, Minor A M, Fadley C S, Yablonovitch E, Maboudian R, Javey A 2014 Proc. Natl. Acad. Sci. U. S. A 111 6198
Google Scholar
[106] Liao M, Wei Z, Du L, Wang Q, Tang J, Yu H, Wu F, Zhao J, Xu X, Han B, Liu K, Gao P, Polcar T, Sun Z, Shi D, Yang R, Zhang G 2020 Nat. Commun. 11 2153
Google Scholar
[107] Cui J, Li P, Zhou J, He W Y, Huang X, Yi J, Fan J, Ji Z, Jing X, Qu F, Cheng Z G, Yang C, Lu L, Suenaga K, Liu J, Law K T, Lin J, Liu Z, Liu G 2019 Nat. Commun. 10 2044
Google Scholar
[108] Li H, Zhang Q, Yap C C R, Tay B K, Edwin T H T, Olivier A, Baillargeat D 2012 Adv. Funct. Mater. 22 1385
Google Scholar
[109] Berkdemir A, Gutiérrez H R, Botello Méndez A R, Perea López N, Elías A L, Chia C I, Wang B, Crespi V H, López Urías F, Charlier J C, Terrones H, Terrones M 2013 Sci. Rep. 3 1755
Google Scholar
[110] Lui C H, Li Z, Chen Z, Klimov P V, Brus L E, Heinz T F 2011 Nano Lett. 11 164
Google Scholar
[111] Zhang X, Han W P, Qiao X F, Tan Q H, Wang Y F, Zhang J, Tan P H 2016 Carbon 99 118
Google Scholar
[112] Hou Y, Ren X, Fan J, Wang G, Dai Z, Jin C, Wang W, Zhu Y, Zhang S, Liu L, Zhang Z 2020 ACS Appl. Mater. Interfaces 12 40958
Google Scholar
[113] Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181
Google Scholar
[114] Berezinskiǐ V L 1972 Sov. J. Exp. Theor. Phys. 34 610
[115] Lake B, Rønnow H M, Christensen N B, Aeppli G, Lefmann K, McMorrow D F, Vorderwisch P, Smeibidl P, Mangkorntong N, Sasagawa T, Nohara M, Takagi H, Mason T E 2002 Nature 415 299
Google Scholar
[116] Caviglia A D, Gariglio S, Reyren N, Jaccard D, Schneider T, Gabay M, Thiel S, Hammerl G, Mannhart J, Triscone J M 2008 Nature 456 624
Google Scholar
[117] Reyren N, Thiel S, Caviglia A D, Kourkoutis L F, Hammerl G, Richter C, Schneider C W, Kopp T, Rüetschi A S, Jaccard D, Gabay M, Muller D A, Triscone J M, Mannhart J 2007 Science 317 1196
Google Scholar
[118] An L, Cai X, Pei D, Huang M, Wu Z, Zhou Z, Lin J, Ying Z, Ye Z, Feng X, Gao R, Cacho C, Watson M, Chen Y, Wang N 2020 Nanoscale Horiz. 5 1309
Google Scholar
[119] Scheurer M S, Samajdar R 2020 Phys. Rev. Res. 2 033062
Google Scholar
[120] Nishino T, Yamada E, Kawabe U 1986 Phys. Rev. B 33 2042
Google Scholar
[121] Tal O, Rosenwaks Y, Preezant Y, Tessler N, Chan C K, Kahn A 2005 Phys. Rev. Lett. 95 256405
Google Scholar
[122] Ueno K, Shimotani H, Yuan H, Ye J, Kawasaki M, Iwasa Y 2014 J. Phys. Soc. Jpn. 83 032001
Google Scholar
[123] Zhang Y, Ye J, Matsuhashi Y, Iwasa Y 2012 Nano Lett. 12 1136
Google Scholar
[124] Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A 2011 Nat. Nanotechnol. 6 147
Google Scholar
[125] Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N, Nojima T, Aoki H, Iwasa Y, Kawasaki M 2008 Nat. Mater. 7 855
Google Scholar
[126] Dhoot A S, Yuen J D, Heeney M, McCulloch I, Moses D, Heeger A J 2006 Proc. Natl. Acad. Sci. U. S. A. 103 11834
Google Scholar
[127] Simon P, Gogotsi Y 2008 Nat. Mater. 7 845
Google Scholar
[128] Shimotani H, Suzuki H, Ueno K, Kawasaki M, Iwasa Y 2008 Appl. Phys. Lett. 92 242107
Google Scholar
[129] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R, Iwasa Y 2012 Science 338 1193
Google Scholar
[130] Yuan H, Shimotani H, Tsukazaki A, Ohtomo A, Kawasaki M, Iwasa Y 2009 Adv. Funct. Mater. 19 1046
Google Scholar
[131] Lin Z, Taberna P L, Simon P 2016 Electrochim. Acta 206 446
Google Scholar
[132] Han S, Song C L, Ma X C, Xue Q K 2021 C. R. Phys. 22 163
Google Scholar
[133] He Q L, Liu H, He M, Lai Y H, He H, Wang G, Law K T, Lortz R, Wang J, Sou I K 2014 Nat. Commun. 5 4247
Google Scholar
[134] Zhang W H, Liu X, Wen C H P, Peng R, Tan S Y, Xie B P, Zhang T, Feng D L 2016 Nano Lett. 16 1969
Google Scholar
[135] Lee J J, Schmitt F T, Moore R G, Johnston S, Cui Y T, Li W, Yi M, Liu Z K, Hashimoto M, Zhang Y, Lu D H, Devereaux T P, Lee D H, Shen Z X 2014 Nature 515 245
Google Scholar
[136] Zhang T, Cheng P, Li W J, Sun Y J, Wang G, Zhu X G, He K, Wang L, Ma X, Chen X, Wang Y, Liu Y, Lin H Q, Jia J F, Xue Q K 2010 Nat. Phys. 6 104
Google Scholar
[137] Peltonen T J, Ojajärvi R, Heikkilä T T 2018 Phys. Rev. B 98 220504
Google Scholar
[138] Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 590 249
Google Scholar
[139] Jin C, Regan E C, Yan A, Iqbal Bakti Utama M, Wang D, Zhao S, Qin Y, Yang S, Zheng Z, Shi S, Watanabe K, Taniguchi T, Tongay S, Zettl A, Wang F 2019 Nature 567 76
Google Scholar
[140] Cao Y, Rodan Legrain D, Park J M, Yuan N F Q, Watanabe K, Taniguchi T, Fernandes R M, Fu L, Jarillo Herrero P 2021 Science 372 264
Google Scholar
[141] Park J M, Cao Y, Watanabe K, Taniguchi T, Jarillo Herrero P 2021 Nature 592 43
Google Scholar
计量
- 文章访问数: 8305
- PDF下载量: 379
- 被引次数: 0