-
The knowledge of phase transition of material under dynamic loading is an important area of research in inertial confinement fusion and material science. Though the shock-induced phase transitions of various materials over a broad pressure range have become a field of study for decades, the loading strain rates in most of these experiments is not more than
$ {10^{6}}\;{{\rm{s}}^{ - 1}} $ . However, in contrast with the strain rate range where the phase diagram is a good predictor of the crystal structure of a material, at higher strain rate ($ > {10^{6}}\;{{\rm{s}}^{ - 1}} $ ) the phase diagram measured can be quite different not only in shifting the boundary line between various phases, but also in giving a different sequence of crystal structure. High-power laser facility can drive shock wave and simultaneously provide a precisely synchronized ultra-short and ultra-intense X-ray source. Here, based on the Prototype laser facility, an in situ X-ray diffraction platform for diagnosing shock-induced phase transition of polycrystalline material is established. The in situ observation of material phase transition under high-strain-rate shock loading is carried out with typical metals of vanadium and iron. Diffraction results are consistent with vanadium remaining in the body-centered-cubic structure up to 69 GPa, while iron transforms from the body-centered-cubic structure into hexagonal-close-packed structure at 159 GPa. The compressive properties of vanadium and iron obtained in in situ X-ray diffraction experiment are in good agreement with their macroscopic Hugonoit curves. The decrease in the lattice volume over the pressure step period yields a strain rate on the order of$ {10^{8}} - {10^{9}}\;{{\rm{s}}^{ - 1}} $ . The available of the presented in situ X-ray diffraction plateform offers the potential to extend our understanding of the kinetics of phase transition in polycrystalline under high-pressure high-strain-rate shock compression.-
Keywords:
- high-strain-rate loading /
- in situ X-ray diffraction /
- shock-induced phase transition /
- high power laser facility
[1] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar
[2] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar
[3] Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar
[4] Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar
[5] Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1
[6] Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar
[7] Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar
[8] Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar
[9] Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar
[10] Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar
[11] Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar
[12] Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar
[13] Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar
[14] Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar
[15] Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar
[16] McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar
[17] Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar
[18] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 66 136101Google Scholar
Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar
[19] Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar
[20] Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar
[21] Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar
[22] Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar
[23] Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102
[24] Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar
[25] Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar
[26] Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar
[27] Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar
[28] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 63 026202Google Scholar
Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar
[29] Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar
[30] Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar
[31] Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745
-
图 2 (a)冲击压力为 (69.36 ± 9.31) GPa时多晶钒原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动钒箔产生的X射线源能谱, 能谱中主要是
${\rm{H}}{{\rm{e}}_\alpha }$ 线Figure 2. (a) In situ X-ray diffraction image recoded for vanadium under pressure of (69.36 ± 9.31) GPa; (b) the X-ray spectrum emitted by the resulting vanadium foil is measured with crystal spectrometer and shows the dominant
${\rm{H}}{{\rm{e}}_\alpha }$ line.图 3 (a)通过坐标变换将钒原位X射线衍射图像转换到
$2\theta \text{-} \phi$ 空间; (b)沿$\phi$ 方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的钒样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$ )的关系, 实线代表轻气炮测量得到的钒Hugoniot曲线Figure 3. (a) X-ray diffraction data for shock-compressed vanadium projected into
$2\theta \text{-} \phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of vanadium recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$ ) for vanadium, where Hugoniot measurements from gas gun experiments are shown as solid line.图 4 (a)冲击压力为 (159.30 ± 6.11) GPa时多晶铁原位X射线衍射图像; (b)平面晶体谱仪测量的高功率激光驱动铁箔产生的X射线源能谱, 能谱中主要是
${\rm{H}}{{\rm{e}}_\alpha }$ 线Figure 4. (a) In situ X-ray diffraction image recoded for iron under pressure of (159.30 ± 6.11) GPa; (b) the X-ray spectrum emitted by the resulting iron foil is measured with crystal spectrometer and shows the dominant
${\rm{H}}{{\rm{e}}_\alpha }$ line.图 5 (a)通过坐标变换将铁原位X射线衍射图像转换到
$2\theta\text{-}\phi$ 空间; (b)沿$\phi$ 方向积分并扣除本底后得到一维X射线衍射曲线; (c)激光干涉测速仪(DISAR)测量的铁样品自由面粒子速度演化历史, 据此可计算样品压力; (d)原位X射线衍射实验测量的压力与压缩比($\rho/\rho_{0}$ )的关系, 实线代表轻气炮测量得到的铁Hugoniot曲线Figure 5. (a) X-ray diffraction data for shock-compressed iron projected into
$2\theta\text{-}\phi$ space; (b) the corresponding background-subtracted one-dimensional X-ray diffraction pattern; (c) the free surface velocity of iron recorded by the DISAR system; (d) pressure vs. compression ratio ($\rho/\rho_{0}$ ) for iron, where Hugoniot measurements from gas gun experiments are shown as solid line.Material $\rho_{0}/{\rm g}\!\cdot\! {\rm {cm} }^{-3}$ $C_{0}/{\rm {km} }\!\cdot\! {\rm s}^{-1}$ $\lambda$ V 6.105 5.044 1.242 Fe 7.850 3.935 1.578 -
[1] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G, Collins G W 2008 Phys. Rev. Lett. 101 065701Google Scholar
[2] Smith R F, Eggert J H, Swift D C, Wang J, Duffy T S, Braun D G, Rudd R E, Reisman D B, Davis J P, Knudson M D, Collins G W 2013 J. Appl. Phys. 114 223507Google Scholar
[3] Amadou N, Resseguier T, Brambrink E, Vinci T, Benuzzi-Mounaix A, Huser G, Morard G, Guyot F, Miyanishi K, Ozaki N, Kodama R, Koenig M 2016 Phys. Rev. B 93 214108Google Scholar
[4] Gorman M G, Coleman A L, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Galtier E, Lee H J, Granados E, Sliwa M, Sanloup C, Rothman S, Fratanduono D E, Smith R F, Collins G W, Eggert J H, Wark J S, McMahon M I 2018 Sci. Rep. 8 16927Google Scholar
[5] Armstrong M R, Radousky H B, Austin R A, Stavrou E, Zong H, Ackland G J, Brown S, Crowhurst J C, Gleason A E, Granados E, Grivickas P, Holtgrewe N, Lee H J, Li T T, Lobanov S, McKeown J T, Nagler R, Nam I, Nelson A J, Prakapenka V, Prescher C, Roehling J D, Teslich N E, Walter P, Goncharov A F, Belof J L 2018 arXiv:1808.02181v1
[6] Barker L M, Hollenbach R E 1974 J. Appl. Phys. 45 4872Google Scholar
[7] Maddox B R, Park H S, Remington B A, Chen C, Chen S, Prisbrey S T, Comley A, Back C A, Szabo C, Seely J F, Feldman U, Hudson L T, Seltzer S, Haugh M J, Ali Z 2011 Phys. Plasmas 18 056709Google Scholar
[8] Turneaure S J, Sinclair N, Gupta Y M 2016 Phys. Rev. Lett. 117 045502Google Scholar
[9] Sharma S M, Turneaure S J, Winey J M, Li Y, Rigg P, Schuman A, Sinclair N, Toyoda Y, wang X, Weir N, Zhang J, Gupta Y M 2019 Phys. Rev. Lett. 123 045702Google Scholar
[10] Milathianaki D, Boutet S, Williams G J, Higginbotham A, Ratner D, Gleason A E, Messerschmidt M, Seibert M M, Swift D C, Hering P, Robinson J, White W E, Wark J S 2013 Science 342 220Google Scholar
[11] Coleman A L, Gorman M G, Briggs R, McWilliams R S, McGonegle D, Bolme C A, Gleason A E, Fratanduono D E, Smith R F, Galtier E, Lee H J, Nagler B, Granados E, Collins G W, Eggert J H, Wark J S, McMahon M I 2019 Phys. Rev. Lett. 122 255704Google Scholar
[12] Coppari F, Smith R F, Eggert J H, Wang J, Rygg J R, Lazicki A, Hawreliak J A, Collins G W, Duffy T S 2013 Nat. Geosci. 6 926Google Scholar
[13] Wang J, Coppari F, Smith R F, Eggert J H, Lazicki A E, Fratanduono D E, Rygg J R, Boehly T R, Collins G W, Duffy T S 2016 Phys. Rev. B 94 104102Google Scholar
[14] Wicks J K, Smith R F, Fratanduono D E, Coppari F, Kraus R G, Newman M G, Rygg J R, Eggert J H, Duffy T S 2018 Sci. Adv. 4 eaao5864Google Scholar
[15] Chen X, Xue T, Liu D, Yang Q, Luo B, Mu Li, Li X, Li J 2018 Rev. Sci. Instrum. 89 013904Google Scholar
[16] McCoy C A, Marshall M C, Polsin D N, Fratanduono D E, Celliers P M, Meyerhofer D D, Boehly T R 2019 Phys. Rev. B 100 014106Google Scholar
[17] Lazicki A, Rygg J R, Coppari F, Smith R, Fratanduono D, Kraus R G, Collins G W, Briggs R, Braun D G, Swift D C, Eggert J H 2015 Phys. Rev. Lett. 115 075502Google Scholar
[18] 李俊, 陈小辉, 吴强, 罗斌强, 李牧, 阳庆国, 陶天炯, 金柯, 耿华运, 谭叶, 薛桃 2017 66 136101Google Scholar
Li J, Chen X H, Wu Q, Luo B Q, Li M, Yang Q G, Tao T J, Jin K, Geng H Y, Tan Y, Xue T 2017 Acta Phys. Sin. 66 136101Google Scholar
[19] Swift D C, Tierney T E, Kopp R A, Gammel J T 2004 Phys. Rev. E 69 036406Google Scholar
[20] Weng J D, Tan H, Wang X, Ma Y, Hu S L, Wang X S 2006 Appl. Phys. Lett. 89 111101Google Scholar
[21] Gathers G R 1986 J. Appl. Phys. 59 3291Google Scholar
[22] Browna J M, Fritz J N, Hixson R S 2000 J. Appl. Phys. 88 5496Google Scholar
[23] Schollmeier M, Ao T, Field E S, Galloway B R, Kalita P, Kimmel M W, Morgan D V, Rambo P K, Schwarz J, Shores J E, Smith I C, Speas C S, Benage J F, Porter J L 2018 Rev. Sci. Instrum. 89 10F102
[24] Vignes R M, Ahmed M F, Eggert J H, Fisher A C, Kalantar D H, Masters N D, Smith C A, Smith R F 2016 J. Phys. Conf. Ser. 717 012115Google Scholar
[25] Moriarty J A 1992 Phys. Rev. B 45 2004Google Scholar
[26] Ding Y, Ahuja R, Shu J, Chow P, Luo W, Mao H K 2007 Phys. Rev. Lett. 98 085502Google Scholar
[27] Qiu S L, Marcus P M 2008 J. Phys. Condens. Matter 20 275218Google Scholar
[28] 俞宇颖, 谭叶, 戴诚达, 李雪梅, 李英华, 谭华 2014 63 026202Google Scholar
Yu Y Y, Tan Y, Dai C D, Li X M, Li Y H, Tan H 2014 Acta Phys. Sin. 63 026202Google Scholar
[29] Foster J M, Comley A J, Case G S, Avraam P, Rothman S D, Higginbotham A, Floyd E K, Gumbrell E T, Luis J J, McGonegle D, Park N T, Peacock L J, Poulter C P, Suggit M J, Wark J S 2017 J. Appl. Phys. 122 025117Google Scholar
[30] Tateno S, Hirose K, Ohishi Y, Tatsumi Y 2010 Science 330 359Google Scholar
[31] Denoeud A, Ozaki N, Benuzzi-Mounaix A, et al. 2016 Proc. Natl. Acad. Sci. U.S.A. 113 7745
Catalog
Metrics
- Abstract views: 7870
- PDF Downloads: 160
- Cited By: 0