Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Production and measurement of MeV proton microbeams in atmospheric environment based on glass capillary

Wan Cheng-Liang Pan Yu-Zhou Zhu Li-Ping Li Peng-Fei Zhang Hao-Wen Zhao Zhuo-Yan Yuan Hua Fan Xu-Hong Sun Wen-Sheng Du Zhan-Hui Chen Qian Cui Ying Liao Tian-Fa Wei Xiao-Hui Wang Tian-Qi Chen Xi-Meng Li Gong-Ping Reinhold Schuch Zhang Hong-Qiang

Citation:

Production and measurement of MeV proton microbeams in atmospheric environment based on glass capillary

Wan Cheng-Liang, Pan Yu-Zhou, Zhu Li-Ping, Li Peng-Fei, Zhang Hao-Wen, Zhao Zhuo-Yan, Yuan Hua, Fan Xu-Hong, Sun Wen-Sheng, Du Zhan-Hui, Chen Qian, Cui Ying, Liao Tian-Fa, Wei Xiao-Hui, Wang Tian-Qi, Chen Xi-Meng, Li Gong-Ping, Reinhold Schuch, Zhang Hong-Qiang
PDF
HTML
Get Citation
  • Traditionally, ion microbeam is produced by focusing or/and collimating to reduce the beam size to submicron level. The traditional setup for producing the microbeam consists of an expensive focusing and collimating system with a large space, based on electromagnetic fields. Meanwhile, the microbeam obtained through pure collimation of metal micro-tubes is limited by the fabrication processing, i.e. the size of beam spot is largely limited to a few microns and its manufacture is not as simple as that of a glass capillary. Inspired by early studies of the guiding effect, the use of inexpensive and easy-to-make glass capillaries as the tool for ion external microbeam production has become a new direction.In this work, we use a glass capillary with an open outlet (108 μm in diameter), which serves as a vacuum differential and collimating component, to produce a 2.5 MeV-proton microbeam directly from the linear accelerator into the atmosphere for measurements. We measure the beam spot diameter and energy distribution of the microbeam as a function of the tilt angle of the capillary. We also conduct calculations and ion trajectory analysis on the scattering process of 2.5 MeV protons on the inner walls.The measurement results show that when the tilt angle is around 0°, there are a direct transmission part that maintains the initial incident energy, and a scattering part with the energy loss in the microbeam. It is found that the proportion of directly transmitted protons and the beam spot size are highest near zero tilt angle. As the tilt angle increases, the beam spot diameter decreases; when the tilt angle is greater than the geometric angle, all the microbeams come from the scattering with the energy loss. The simulation combined with the ion trajectory analysis based on the scattering process can explain the experimental results. It is found that the large angle scattering determines the entire external microbeam spot, and the central region of the beam spot is composed of directly penetrating ions, whose size is determined by the geometric shape of the glass capillary, i.e. the outlet diameter and aspect ratio.The natural advantage of producing external micobeames easily and inexpensively through glass capillaries is their relative safety and stable operation, and the last but not least point is to simply locate the microbeams on the sample without complex diagnostic tools. The microbeams are expected to be widely used in fields such as radiation biology, medicine, and materials.
      Corresponding author: Zhang Hong-Qiang, zhanghq@lzu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. U1732269), the Fundamental Research Funds for the Central Universities, China (Grant No. lzujbky-2021-sp41), the Key Projects of Ordinary Universities in Guangdong Province, China (Grant No. 2022ZDZX3028), the Key Projects of Guangdong Basic and Applied Basic Research Foundation, China (Grant No. 2022B1515120051), and the Key Discipline Research Ability Improvement Project of Guangdong Provincial Department of Education, China (Grant No. 2022ZDJS055).
    [1]

    Grime G W, Abraham M H, Marsh M A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 181 66Google Scholar

    [2]

    窦彦昕 2018 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Dou Y X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [3]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [4]

    Nebiki T, Yamamoto T, Narusawa T 2003 J. Vac. Sci. Technol. A 21 1671Google Scholar

    [5]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [6]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [7]

    Cassimi A, Muranaka T, Maunoury L, Lebius H, Manil B, Huber B A, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Nebiki T, Narusawa T 2008 Int. J. Nanotechnol. 5 809Google Scholar

    [8]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar

    [9]

    Chen J, Xue Y L, Liu J L, Wu Y H, Ruan F F, Wang W, Yu D Y, Cai X H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 281 26Google Scholar

    [10]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar

    [11]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res. Sect. B 258 145Google Scholar

    [12]

    Wang Y Y, Li D H, Zhao Y T, Xiao G Q, Xu Z F, Li F L, Chen X M 2009 J. Phys. Conf. Ser. 194 132032Google Scholar

    [13]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [14]

    Wang X, Zhao Y T, Wang Y Y, Cheng R, Li D H, Zhang S F, Xiao G Q 2011 Phys. Scr. 2011 014046Google Scholar

    [15]

    Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 279 177Google Scholar

    [16]

    Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [17]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lü X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar

    [18]

    Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lü X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar

    [19]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901Google Scholar

    [20]

    Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [21]

    Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [22]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [23]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar

    [24]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [25]

    Stolterfoht N, Tanis J 2018 Nucl. Instrum. Metods Phys. Res. Sect. B 421 32Google Scholar

    [26]

    Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701Google Scholar

    [27]

    Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar

    [28]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [29]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [30]

    Nguyen H D, Wulfkühler J P, Heisig J, Tajmar M 2021 Sci. Rep. 11 8345Google Scholar

    [31]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [32]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [33]

    Oshima N, Iwai Y, Kojima T M, Ikeda T, Kanazawa Y, Hoshino M, Suzuki R, Yamazaki Y 2009 Mater. Sci. Forum 607 263Google Scholar

    [34]

    DuBois R D, Tőkési K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 186Google Scholar

    [35]

    Kojima T M, Tomono D, Ikeda T, Ishida K, Iwai Y, Iwasaki M, Matsuda Y, Matsuzaki T, Yamazaki Y 2007 J. Phys. Soc. Jpn. 76 093501Google Scholar

    [36]

    Tomono D, Kojima T M, Ishida K, Ikeda T, Iwai Y, Tokuda M, Kanazawa Y, Matsuda Y, Matsuzaki T, Iwasaki M, Yamazaki Y 2011 J. Phys. Soc. Jpn. 80 044501Google Scholar

    [37]

    Ikeda T, Kanai Y, Iwai Y, Kojima T M, Maeshima K, Meissl W, Kobayashi T, Nebiki T, Miyamoto S, Pokhil G P, Narusawa T, Imamoto N, Yamazaki Y 2011 Surf. Coat. Tech. 206 859Google Scholar

    [38]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [39]

    Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 2277Google Scholar

    [40]

    Bereczky R J, Kowarik G, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 317Google Scholar

    [41]

    Gruber E, Stolterfoht N, Allinger P, Wampl S, Wang Y, Simon M J, Aumayr F 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 340 1Google Scholar

    [42]

    Ikeda T, Kojima T M, Natsume Y, Kimura J, Abe T 2016 Appl. Phys. Lett. 109 133501Google Scholar

    [43]

    Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 1324Google Scholar

    [44]

    Hespeels F, Tonneau R, Ikeda T, Lucas S 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 362 72Google Scholar

    [45]

    Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 273 237Google Scholar

    [46]

    Ikeda T, Ikekame M, Hikima Y, Mori M, Kawamura S, Minowa T, Jin W G 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 470 42Google Scholar

    [47]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [48]

    Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima T M, Imamoto N, Ogiwara K, Yamazaki Y 2014 Rev. Sci. Instrum. 85 014302Google Scholar

    [49]

    Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y 2015 Rev. Sci. Instrum. 86 085103Google Scholar

    [50]

    Puttaraksa N, Mäckel V, Kobayashi T, Kojima T M, Hamagaki M, Imamoto N, Yamazaki Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 348 127Google Scholar

    [51]

    Ikeda T, Izumi M, Mäckel V, Kobayashi T, Bereczky R J, Hirano T, Yamazaki Y, Abe T 2015 RIKEN Accel. Prog. Rep. 48 315

    [52]

    Ikeda T, Izumi M, Mäckel V, Kobayashi T, Ogiwara K, Hirano T, Yamazaki Y, Abe T 2014 RIKEN Accel. Prog. Rep. 47 282

    [53]

    Kato M, Meissl W, Umezawa K, Ikeda T, Yamazaki Y 2012 Appl. Phys. Lett. 100 193702Google Scholar

    [54]

    Ikeda T 2020 Quantum Beam Sci. 4 22Google Scholar

    [55]

    谢一鸣 2020 硕士学位论文(兰州: 兰州大学)

    Xie Y M 2020 M. S. Thesis (Lanzhou: Lanzhou University

    [56]

    He T, Wan C, Liu Z, Zhang H, Lu L 2023 JINST 18 P05034Google Scholar

    [57]

    Rana M A 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 910 121Google Scholar

    [58]

    Computer code SRIM, version-2013[EB/OL] Ziegler J F http://www.srim.org/ [2024-1-1]

  • 图 1  外束微束产生装置及测量终端示意图, 虚线框为外束微束测量终端

    Figure 1.  Schematic drawing of external microbeam production device and measurement terminal, dashed box is external microbeam measurement terminal.

    图 2  玻璃毛细管整体示意图(左)和出口截面示意图(右), 插入图为玻璃毛细管实物图

    Figure 2.  Schematic drawing of the glass capillary, left is overall, α indicating the geometric flare angle of the glass capillary, right is outlet cross section, and the insert shows the photograph of the glass capillary.

    图 3  金硅面垒探测器的能量刻度曲线

    Figure 3.  Energy calibration curve of the surface barrier detector.

    图 4  玻璃毛细管在不同倾角下外束微束的束斑图(a)和能谱(b)

    Figure 4.  Beam profiles (a) and energy spectra (b) of the external microbeam at distance from the outlet of the glass capillary as 1 mm, according to various tilt angles of the glass capillary.

    图 5  玻璃毛细管在不同倾角下外束微束的全部穿透率(圆形标记)和直接穿透穿透率(正方形标记). 插图为0°倾角下实验测得的外束微束能谱(黑色), 解谱得到直接穿透部分(红色)和散射部分(蓝色). 左右两侧虚线间距代表玻璃毛细管的张角(0.9°)

    Figure 5.  Transmission rate of the total penetration (circle) and direct penetration (square) of the external microbeam, according to various tilt angles of the glass capillary. Insert: experimentally measured energy spectrum of the external microbeam at tilt angle 0°(black), the direct penetration part (red) and scattering part (blue) are obtained by deconstructing the spectrum. The distance between the dashed lines on both sides represents the geometric flare angle of the glass capillary (0.9°).

    图 6  2.5 MeV质子在玻璃毛细管内的模拟结果 (a) β = 0.4°时的散射角分布, 此时散射离子最大概率出射角为0.7°; (b) 不同β角下的最大概率出射角; (c)不同β角下的散射概率; (d) 玻璃毛细管内侧距出口不同距离处的出射最小概率

    Figure 6.  Simulation of 2.5 MeV protons in the glass capillary: (a) Scattering angle distribution at an incidence angle of 0.4°, the most probability exit angle is 0.7°; (b) the most probable exit angle at different β angles; (c) scattering probability of protons at different β angles; (d) the least exit probability at different distances in the glass capillary towards the outlet.

    图 7  (a)倾角为0°时外束微束在玻璃管末端的出射情况示意图; (b)实验测得能谱, 黑色线为总能谱, 灰色填充部分为直接穿透能谱; (c)倾角为1.2°时直接穿透离子消失; (d)相应的能谱中直接穿透部分消失

    Figure 7.  (a) Schematic drawing of the external microbeam emission at the end of a glass capillary; (b) the experimentally measured energy spectrum at title angle of 0°, the red and blue lines in panel (a) represent the diret penetration and scattering part, respectively; the black line and the gray filled part represent the total energy spectrum and the direct penetration spectrum, respectively; (c) when the tilt angle is 1.2°, the directly penetrating ions disappear; (d) the directly penetrating part of the energy spectrum disappears, correspondingly.

    图 8  (a) 0°倾角下, 距毛细玻璃管出口不同距离处的外束微束束斑轮廓. 1 mm处束斑轮廓图中红色和蓝色虚线区域分别为直接穿透离子和散射离子在探测器上形成的束斑轮廓. (b) 0°倾角下直接穿透离子(红色)和散射离子(蓝色)分别在距玻璃毛细管出口1 mm和4 mm处探测器上形成束斑尺寸的理论示意图, 分别以1.8°张角和20°张角计算直接穿透离子和散射离子的理论最大分布直径. 距玻璃管出口1 mm和4 mm处, 直接穿透离子为140 μm和230 μm, 散射离子为460 μm和1.5 mm

    Figure 8.  (a) Spot profiles of the external microbeam at different distances from the outlet of the glass capillary at tilt angle of 0°. Red and blue dashed lines represent the beam spot profiles formed by directly penetrating ions and scattering ions on the detector, respectively. (b) Theoretical schematic panel (a) of the beam spot size formed by direct penetration of ions (red) and scattered ions (blue) at an tilt angle of 0° on the detector at a distance of 1 mm and 4 mm from the exit of the glass capillary, respectively. The theoretical maximum distribution diameters of direct penetrating ions and scattered ions were calculated at angles of 1.8° and 20°, respectively. At distances of 1 mm and 4 mm from the exit of the glass capilarry, the spot diameters of direct penetrating ions are 140 μm and 230 μm, while the spot diameters of the scattered ions are 460 μm and 1.5 mm.

    图 9  离子在玻璃毛细管内壁上以最大出射角发生一次散射(蓝色)和二次散射(绿色)示意图, 红线代表直接穿透离子. 初级和次级散射离子的焦点分别位于距离玻璃毛细管出口约3 mm和1 mm处

    Figure 9.  Schematic drawing of primary (blue) and secondary (green) scattering of ions at the most probability exit angle on the inner wall of the glass capillary, the red line representing direct penetration of ions. The focal points of primary and secondary scattering ions are located approximately 3 mm and 1 mm away from the glass capillary outlet, respectively.

    Baidu
  • [1]

    Grime G W, Abraham M H, Marsh M A 2001 Nucl. Instrum. Methods Phys. Res. Sect. B 181 66Google Scholar

    [2]

    窦彦昕 2018 博士学位论文(哈尔滨: 哈尔滨工业大学)

    Dou Y X 2018 Ph. D. Dissertation (Harbin: Harbin Institute of Technology

    [3]

    Stolterfoht N, Bremer J H, Hoffmann V, Hellhammer R, Fink D, Petrov A, Sulik B 2002 Phys. Rev. Lett. 88 133201Google Scholar

    [4]

    Nebiki T, Yamamoto T, Narusawa T 2003 J. Vac. Sci. Technol. A 21 1671Google Scholar

    [5]

    Skog P, Zhang H, Schuch R 2008 Phys. Rev. Lett. 101 223202Google Scholar

    [6]

    Zhang H Q, Skog P, Schuch R 2010 Phys. Rev. A 82 052901Google Scholar

    [7]

    Cassimi A, Muranaka T, Maunoury L, Lebius H, Manil B, Huber B A, Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Nebiki T, Narusawa T 2008 Int. J. Nanotechnol. 5 809Google Scholar

    [8]

    Cassimi A, Ikeda T, Maunoury L, Zhou C L, Guillous S, Mery A, Lebius H, Benyagoub A, Grygiel C, Khemliche H, Roncin P, Merabet H, Tanis J A 2012 Phys. Rev. A 86 062902Google Scholar

    [9]

    Chen J, Xue Y L, Liu J L, Wu Y H, Ruan F F, Wang W, Yu D Y, Cai X H 2012 Nucl. Instrum. Methods Phys. Res. , Sect. B 281 26Google Scholar

    [10]

    Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L, Juhász Z, Biri S, Fekete É, Iván I, Gáll F, Sulik B, Víkor Gy, Pálinkás J, Stolterfoht N 2006 Nanotechnology 17 3915Google Scholar

    [11]

    Skog P, Soroka I L, Johansson A, Schuch R 2007 Nucl. Instrum. Metods Phys. Res. Sect. B 258 145Google Scholar

    [12]

    Wang Y Y, Li D H, Zhao Y T, Xiao G Q, Xu Z F, Li F L, Chen X M 2009 J. Phys. Conf. Ser. 194 132032Google Scholar

    [13]

    Stolterfoht N, Hellhammer R, Sulik B, Juhász Z, Bayer V, Trautmann C, Bodewits E, Hoekstra R 2011 Phys. Rev. A 83 062901Google Scholar

    [14]

    Wang X, Zhao Y T, Wang Y Y, Cheng R, Li D H, Zhang S F, Xiao G Q 2011 Phys. Scr. 2011 014046Google Scholar

    [15]

    Juhász Z, Kovács S T S, Herczku P, Rácz R, Biri S, Rajta I, Gál G A B, Szilasi S Z, Pálinkás J, Sulik B 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 279 177Google Scholar

    [16]

    Sahana M B, Skog P, Vikor G, Kumar R T R, Schuch R 2006 Phys. Rev. A 73 040901Google Scholar

    [17]

    Sun G Z, Chen X M, Wang J, Chen Y F, Xu J K, Zhou C L, Shao J X, Cui Y, Ding B W, Yin Y Z, Wang X A, Lou F J, Lü X Y, Qiu X Y, Jia J J, Chen L, Xi F Y, Chen Z C, Li L T, Liu Z Y 2009 Phys. Rev. A 79 052902Google Scholar

    [18]

    Chen L, Guo Y L, Jia J J, Zhang H Q, Cui Y, Shao J X, Yin Y Z, Qiu X Y, Lü X Y, Sun G Z, Wang J, Chen Y F, Xi F Y, Chen X M 2011 Phys. Rev. A 84 032901Google Scholar

    [19]

    Feng D, Shao J X, Zhao L, Ji M C, Zou X R, Wang G Y, Ma Y L, Zhou W, Zhou H, Li Y, Zhou M, Chen X M 2012 Phys. Rev. A 85 064901Google Scholar

    [20]

    Zhang Q, Liu Z L, Li P F, Jin B, Song G Y, Jin D K, Niu B, Wei L, Ha S, Xie Y M, Ma Y, Wan C L, Cui Y, Zhou P, Zhang H Q, Chen X M 2018 Phys. Rev. A 97 042704Google Scholar

    [21]

    Milosavljević A R, Víkor G, Pešić Z D, Kolarž P, Šević D, Marinković B P, Mátéfi-Tempfli S, Mátéfi-Tempfli M, Piraux L 2007 Phys. Rev. A 75 030901Google Scholar

    [22]

    Das S, Dassanayake B S, Winkworth M, Baran J L, Stolterfoht N, Tanis J A 2007 Phys. Rev. A 76 042716Google Scholar

    [23]

    Keerthisinghe D, Dassanayake B S, Wickramarachchi S J, Stolterfoht N, Tanis J A 2015 Phys. Rev. A 92 012703Google Scholar

    [24]

    Schiessl K, Tőkési K, Solleder B, Lemell C, Burgdörfer J 2009 Phys. Rev. Lett. 102 163201Google Scholar

    [25]

    Stolterfoht N, Tanis J 2018 Nucl. Instrum. Metods Phys. Res. Sect. B 421 32Google Scholar

    [26]

    Dassanayake B S, Das S, Bereczky R J, Tőkési K, Tanis J A 2010 Phys. Rev. A 81 020701Google Scholar

    [27]

    Dassanayake B S, Bereczky R J, Das S, Ayyad A, Tökési K, Tanis J A 2011 Phys. Rev. A 83 012707Google Scholar

    [28]

    万城亮, 李鹏飞, 钱立冰, 靳博, 宋光银, 高志民, 周利华, 张琦, 宋张勇, 杨治虎, 邵剑雄, 崔莹, Reinhold Schuch, 张红强, 陈熙萌 2016 65 204103Google Scholar

    Wan C L, Li P F, Qian L B, Jin B, Song G Y, Gao Z M, Zhou L H, Zhang Q, Song Z Y, Yang Z H, Shao J X, Cui Y, Reinhold S, Zhang H Q, Chen X M 2016 Acta Phys. Sin. 65 204103Google Scholar

    [29]

    钱立冰, 李鹏飞, 靳博, 靳定坤, 宋光银, 张琦, 魏龙, 牛犇, 万成亮, 周春林, Arnold Milenko Mscrir, Max Dobeli, 宋张勇, 杨治虎, Reinhold Schuch, 张红强, 陈熙萌 2017 66 124101Google Scholar

    Qian L B, Li P F, Jin B, Jin D K, Song G Y, Zhang Q, Wei L, Niu B, Wan C L, Zhou C L, Arnold Milenko M, Max D, Song Z Y, Yang Z H, Reinhold S, Zhang H Q, Chen X M 2017 Acta Phys. Sin. 66 124101Google Scholar

    [30]

    Nguyen H D, Wulfkühler J P, Heisig J, Tajmar M 2021 Sci. Rep. 11 8345Google Scholar

    [31]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 074101Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 074101Google Scholar

    [32]

    李鹏飞, 袁华, 程紫东, 钱立冰, 刘中林, 靳博, 哈帅, 张浩文, 万城亮, 崔莹, 马越, 杨治虎, 路迪, Reinhold Schuch, 黎明, 张红强, 陈熙萌 2022 71 084104Google Scholar

    Li P F, Yuan H, Cheng Z D, Qian L B, Liu Z L, Jin B, Ha S, Zhang H W, Wan C L, Cui Y, Ma Y, Yang Z H, Lu D, Reinhold S, Li M, Zhang H Q, Chen X M 2022 Acta Phys. Sin. 71 084104Google Scholar

    [33]

    Oshima N, Iwai Y, Kojima T M, Ikeda T, Kanazawa Y, Hoshino M, Suzuki R, Yamazaki Y 2009 Mater. Sci. Forum 607 263Google Scholar

    [34]

    DuBois R D, Tőkési K 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 279 186Google Scholar

    [35]

    Kojima T M, Tomono D, Ikeda T, Ishida K, Iwai Y, Iwasaki M, Matsuda Y, Matsuzaki T, Yamazaki Y 2007 J. Phys. Soc. Jpn. 76 093501Google Scholar

    [36]

    Tomono D, Kojima T M, Ishida K, Ikeda T, Iwai Y, Tokuda M, Kanazawa Y, Matsuda Y, Matsuzaki T, Iwasaki M, Yamazaki Y 2011 J. Phys. Soc. Jpn. 80 044501Google Scholar

    [37]

    Ikeda T, Kanai Y, Iwai Y, Kojima T M, Maeshima K, Meissl W, Kobayashi T, Nebiki T, Miyamoto S, Pokhil G P, Narusawa T, Imamoto N, Yamazaki Y 2011 Surf. Coat. Tech. 206 859Google Scholar

    [38]

    Ikeda T, Kanai Y, Kojima T M, Iwai Y, Kambara T, Yamazaki Y, Hoshino M, Nebiki T, Narusawa T 2006 Appl. Phys. Lett. 89 163502Google Scholar

    [39]

    Kowarik G, Bereczky R J, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. , Sect. B 267 2277Google Scholar

    [40]

    Bereczky R J, Kowarik G, Aumayr F, Tőkési K 2009 Nucl. Instrum. Methods Phys. Res. Sect. B 267 317Google Scholar

    [41]

    Gruber E, Stolterfoht N, Allinger P, Wampl S, Wang Y, Simon M J, Aumayr F 2014 Nucl. Instrum. Methods Phys. Res. Sect. B 340 1Google Scholar

    [42]

    Ikeda T, Kojima T M, Natsume Y, Kimura J, Abe T 2016 Appl. Phys. Lett. 109 133501Google Scholar

    [43]

    Nebiki T, Sekiba D, Yonemura H, Wilde M, Ogura S, Yamashita H, Matsumoto M, Fukutani K, Okano T, Kasagi J, Iwamura Y, Itoh T, Kuribayashi S, Matsuzaki H, Narusawa T 2008 Nucl. Instrum. Methods Phys. Res. Sect. B 266 1324Google Scholar

    [44]

    Hespeels F, Tonneau R, Ikeda T, Lucas S 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 362 72Google Scholar

    [45]

    Simon M J, Döbeli M, Müller A M, Synal H A 2012 Nucl. Instrum. Methods Phys. Res. Sect. B 273 237Google Scholar

    [46]

    Ikeda T, Ikekame M, Hikima Y, Mori M, Kawamura S, Minowa T, Jin W G 2020 Nucl. Instrum. Methods Phys. Res. Sect. B 470 42Google Scholar

    [47]

    Iwai Y, Ikeda T, Kojima T M, Yamazaki Y, Maeshima K, Imamoto N, Kobayashi T, Nebiki T, Narusawa T, Pokhil G P 2008 Appl. Phys. Lett. 92 023509Google Scholar

    [48]

    Mäckel V, Meissl W, Ikeda T, Clever M, Meissl E, Kobayashi T, Kojima T M, Imamoto N, Ogiwara K, Yamazaki Y 2014 Rev. Sci. Instrum. 85 014302Google Scholar

    [49]

    Mäckel V, Puttaraksa N, Kobayashi T, Yamazaki Y 2015 Rev. Sci. Instrum. 86 085103Google Scholar

    [50]

    Puttaraksa N, Mäckel V, Kobayashi T, Kojima T M, Hamagaki M, Imamoto N, Yamazaki Y 2015 Nucl. Instrum. Methods Phys. Res. Sect. B 348 127Google Scholar

    [51]

    Ikeda T, Izumi M, Mäckel V, Kobayashi T, Bereczky R J, Hirano T, Yamazaki Y, Abe T 2015 RIKEN Accel. Prog. Rep. 48 315

    [52]

    Ikeda T, Izumi M, Mäckel V, Kobayashi T, Ogiwara K, Hirano T, Yamazaki Y, Abe T 2014 RIKEN Accel. Prog. Rep. 47 282

    [53]

    Kato M, Meissl W, Umezawa K, Ikeda T, Yamazaki Y 2012 Appl. Phys. Lett. 100 193702Google Scholar

    [54]

    Ikeda T 2020 Quantum Beam Sci. 4 22Google Scholar

    [55]

    谢一鸣 2020 硕士学位论文(兰州: 兰州大学)

    Xie Y M 2020 M. S. Thesis (Lanzhou: Lanzhou University

    [56]

    He T, Wan C, Liu Z, Zhang H, Lu L 2023 JINST 18 P05034Google Scholar

    [57]

    Rana M A 2018 Nucl. Instrum. Methods Phys. Res. Sect. A 910 121Google Scholar

    [58]

    Computer code SRIM, version-2013[EB/OL] Ziegler J F http://www.srim.org/ [2024-1-1]

  • [1] Shi Zhi-Qi, He Xiao, Liu Lin, Chen De-Hua, Wang Xiu-Ming. Elastic wave propagation characteristics in unsaturated double-porosity medium under capillary pressure. Acta Physica Sinica, 2023, 72(6): 069101. doi: 10.7498/aps.72.20222063
    [2] Zhu Xin-Zhe, Li Bo-Yuan, Liu Feng, Li Jian-Long, Bi Ze-Wu, Lu Lin, Yuan Xiao-Hui, Yan Wen-Chao, Chen Min, Chen Li-Ming, Sheng Zheng-Ming, Zhang Jie. Experimental study on capillary discharge for laser plasma wake acceleration. Acta Physica Sinica, 2022, 71(9): 095202. doi: 10.7498/aps.71.20212435
    [3] Zhou La-Zhen, Xia Wen-Jing, Xu Qian-Qian, Chen Zan, Li Fang-Zuo, Liu Zhi-Guo, Sun Tian-Xi. Micro cone-beam CT scanner based on X-ray polycapillary optics. Acta Physica Sinica, 2022, 71(9): 090701. doi: 10.7498/aps.71.20212195
    [4] Wang Ya-Nan, Ren Lin-Yuan, Ding Wei-Dong, Sun An-Bang, Geng Jin-Yue. Influence of cavity configuration parameters on discharge characteristics of capillary discharge based pulsed plasma thruster. Acta Physica Sinica, 2021, 70(23): 235204. doi: 10.7498/aps.70.20211198
    [5] Liu Tao, Zhao Yong-Peng, Cui Huai-Yu, Liu Xiao-Lin. Characteristics of gain in Ne-like Ar 69.8 nm laser pumped by capillary discharge based on double-pass amplification. Acta Physica Sinica, 2019, 68(2): 025201. doi: 10.7498/aps.68.20181617
    [6] Han Jin-Hua, Guo Gang, Liu Jian-Cheng, Sui Li, Kong Fu-Quan, Xiao Shu-Yan, Qin Ying-Can, Zhang Yan-Wen. Design of 100-MeV proton beam spreading scheme with double-ring double scattering method. Acta Physica Sinica, 2019, 68(5): 054104. doi: 10.7498/aps.68.20181787
    [7] Jiang Qi-Li, Duan Ze-Ming, Shuai Qi-Lin, Li Rong-Wu, Pan Qiu-Li, Cheng Lin. A new type of micro-X-ray diffractometer focused by polycapillary optics. Acta Physica Sinica, 2019, 68(24): 240701. doi: 10.7498/aps.68.20190497
    [8] Tian Yong-Shun, Hu Zhi-Liang, Tong Jian-Fei, Chen Jun-Yang, Peng Xiang-Yang, Liang Tian-Jiao. Design of beam shaping assembly based on 3.5 MeV radio-frequency quadrupole proton accelerator for boron neutron capture therapy. Acta Physica Sinica, 2018, 67(14): 142801. doi: 10.7498/aps.67.20180380
    [9] Zhao Yong-Peng, Li Lian-Bo, Cui Huai-Yu, Jiang Shan, Liu Tao, Zhang Wen-Hong, Li Wei. Intensity distribution of 69.8 nm laser pumped by capillary discharge. Acta Physica Sinica, 2016, 65(9): 095201. doi: 10.7498/aps.65.095201
    [10] Deng Jia-Chuan, Zhao Yong-Tao, Cheng Rui, Zhou Xian-Ming, Peng Hai-Bo, Wang Yu-Yu, Lei Yu, Liu Shi-Dong, Sun Yuan-Bo, Ren Jie-Ru, Xiao Jia-Hao, Ma Li-Dong, Xiao Guo-Qing, R. Gavrilin, S. Savin, A. Golubev, D. H. H. Hoffmann. Investigation on the energy loss in low energy protons interacting with hydrogen plasma. Acta Physica Sinica, 2015, 64(14): 145202. doi: 10.7498/aps.64.145202
    [11] Zhou Hong-Wei, Wang Lin-Wei, Xu Sheng-Hua, Sun Zhi-Wei. Capillary-driven flow in tubes connected to the containers under microgravity condition. Acta Physica Sinica, 2015, 64(12): 124703. doi: 10.7498/aps.64.124703
    [12] Yun Mei-Juan, Zheng Wei, Li Yun-Bao, Li Yu. Fractal analysis of Herschel-Bulkley fluid flow in a capillary. Acta Physica Sinica, 2012, 61(16): 164701. doi: 10.7498/aps.61.164701
    [13] Gu Yu-Qiu, Ma Zhan-Nan, Zheng Wu-Di, Wang Xiao-Fang, Wu Yu-Chi, Zhu Bin, Dong Ke-Gong, Cao Lei-Feng, He Ying-Ling, Liu Hong-Jie, Hong Wei, Zhou Wei-Min, Zhao Zong-Qing, Zhang Bao-Han, Jiao Chun-Ye, Wen Xian-Lun, Zang Hua-Ping, Yu Jin-Qing, Wei Lai. Density measurement and MHD simulation ofgas-filled capillary discharge waveguide. Acta Physica Sinica, 2011, 60(9): 095202. doi: 10.7498/aps.60.095202
    [14] Huang Wen-Tong, Li Shou-Zhe, Wang De-Zhen, Ma Teng-Cai. Characteristics of the plasma discharge generated in dielectric capillary at atmospheric pressure. Acta Physica Sinica, 2010, 59(6): 4110-4116. doi: 10.7498/aps.59.4110
    [15] Guo Tie-Ying, Lou Shu-Qin, Li Hong-Lei, Jian Shui-Sheng. Capillary drawing for fabrication of photonic crystal fibers: theoretical calculation and experiments. Acta Physica Sinica, 2009, 58(7): 4724-4730. doi: 10.7498/aps.58.4724
    [16] Cao Shi-Ying, Wang Ying, Zhang Zhi-Gang, Chai Lu, Wang Qing-Yue, Yang Jian-Jun, Zhu Xiao-Nong. Spectrum evolution of filamentation restricted by capillary in high pressure gas. Acta Physica Sinica, 2006, 55(9): 4734-4738. doi: 10.7498/aps.55.4734
    [17] Wei Zhong-Chao, Dai Qiao-Feng, Wang He-Zhou. Spectral properties of fcc-like cylindrical colloidal crystals. Acta Physica Sinica, 2006, 55(2): 733-736. doi: 10.7498/aps.55.733
    [18] Sun Jiao, Zhang Jia-Liang, Wang De-Zhen, Ma Teng-Cai. A novel cold plasma jet generated by capillary atmospheric dielectric barrier discharge. Acta Physica Sinica, 2006, 55(1): 344-350. doi: 10.7498/aps.55.344
    [19] Cheng Yuan-Li, Luan Bo-Han, Wu Yin-Chu, Zhao Yong-Peng, Wang Qi, Zheng Wu-Di, Peng Hui-Min, Yang Da-Wei. Effect of pre-pulses on capillary discharge soft x-ray laser. Acta Physica Sinica, 2005, 54(10): 4979-4984. doi: 10.7498/aps.54.4979
    [20] Zhao Yong-Peng, Cheng Yuan-Li, Wang Qi, Hayashi Yasushi, Hotta Eiki. The lasing time of soft x-ray laser pumped by capillary discharge. Acta Physica Sinica, 2005, 54(6): 2731-2734. doi: 10.7498/aps.54.2731
Metrics
  • Abstract views:  2351
  • PDF Downloads:  145
  • Cited By: 0
Publishing process
  • Received Date:  28 February 2024
  • Accepted Date:  22 March 2024
  • Available Online:  30 March 2024
  • Published Online:  20 May 2024

/

返回文章
返回
Baidu
map