-
High resolution pulse shaping based on the frequency comb has been widely used in microwave photonics, spectroscopy and communication optics and so on. To describe and evaluate the resolution capability of such a pulse shaping system, the ray tracing method is adopted to analyze the spatial dispersions of four schemes like single grating, parallel gratings, single grating with focus and anti-parallel gratings with focus. The spot spacings and sizes of different wavelengths can be determined from the modeling. As indicated by the calculation results, the latter two structures are advantageous to achieve high resolution pulse shaping; frequency combs with long wavelength, large mode spacing and big spot size are favorable for space dispersion; high grating groove density, small incident angle and multi passes in the dispersion system are conducible to the achievement of high resolution. The criterion for resolution would bring on some spot overlap noise.
-
Keywords:
- optical frequency comb /
- pulse shaping /
- spatial dispersion /
- high resolution
[1] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635
[2] Barty C P, Korn G, Raksi F, Rose-Petruck C, Squier J, Tien A C, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 219
[3] Nogueira G T, Xu B W, Coello Y, Dantus M, Cruz F C 2008 Opt. Express 16 10038
[4] Xu B W, Coello Y, Lozovoy V V, Dantus M 2010 Appl. Opt. 49 6348
[5] Hamzeh B, Jivkova S, Kavehrad M 2005 J. Opt. Network 4 647
[6] Jiang Z, Leaird D E, Weiner A M 2005 Opt. Express 13 10431
[7] Cundiff S T, Weiner A M 2010 Nat. Photon 4 760
[8] Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photon 2 355
[9] Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hansch T W 2005 Nature 436 234
[10] Bartels A, Heinecke D, Diddams S A 2008 Opt. Lett. 33 1905
[11] Weiner A M, Heritage J P, Kirschner E M 1988 J. Opt. Soc. Am. B 5 1563
[12] Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nature Photonics 1 463
[13] Wang W S, Davis R L, Jung T J, Lodenkamper R, Lembo L J, Brock J C, Wu M C 2001 IEEE Trans. Micrew. Theory. Tech. 49 1996
[14] Zou Y H, Sun T H 1991 Laser Physics (Bejing: Peking University) p44 (in Chinese) [邹英华, 孙陶亨 1991 激光物理学(第一版) (北京: 北京大学出版社) 第44页]
[15] Treacy E B 1969 IEEE J. Quantum. Electron. 5 454
-
[1] Jones D J, Diddams S A, Ranka J K, Stentz A, Windeler R S, Hall J L, Cundiff S T 2000 Science 288 635
[2] Barty C P, Korn G, Raksi F, Rose-Petruck C, Squier J, Tien A C, Wilson K R, Yakovlev V V, Yamakawa K 1996 Opt. Lett. 21 219
[3] Nogueira G T, Xu B W, Coello Y, Dantus M, Cruz F C 2008 Opt. Express 16 10038
[4] Xu B W, Coello Y, Lozovoy V V, Dantus M 2010 Appl. Opt. 49 6348
[5] Hamzeh B, Jivkova S, Kavehrad M 2005 J. Opt. Network 4 647
[6] Jiang Z, Leaird D E, Weiner A M 2005 Opt. Express 13 10431
[7] Cundiff S T, Weiner A M 2010 Nat. Photon 4 760
[8] Schibli T R, Hartl I, Yost D C, Martin M J, Marcinkevicius A, Fermann M E, Ye J 2008 Nat. Photon 2 355
[9] Gohle C, Udem T, Herrmann M, Rauschenberger J, Holzwarth R, Schuessler H A, Krausz F, Hansch T W 2005 Nature 436 234
[10] Bartels A, Heinecke D, Diddams S A 2008 Opt. Lett. 33 1905
[11] Weiner A M, Heritage J P, Kirschner E M 1988 J. Opt. Soc. Am. B 5 1563
[12] Jiang Z, Huang C B, Leaird D E, Weiner A M 2007 Nature Photonics 1 463
[13] Wang W S, Davis R L, Jung T J, Lodenkamper R, Lembo L J, Brock J C, Wu M C 2001 IEEE Trans. Micrew. Theory. Tech. 49 1996
[14] Zou Y H, Sun T H 1991 Laser Physics (Bejing: Peking University) p44 (in Chinese) [邹英华, 孙陶亨 1991 激光物理学(第一版) (北京: 北京大学出版社) 第44页]
[15] Treacy E B 1969 IEEE J. Quantum. Electron. 5 454
Catalog
Metrics
- Abstract views: 7671
- PDF Downloads: 490
- Cited By: 0