搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电子回旋共振激发氘负离子数密度的光发射谱诊断

陈越 朱晓东

引用本文:
Citation:

电子回旋共振激发氘负离子数密度的光发射谱诊断

陈越, 朱晓东

Investigation on the density of negative deuterium ion in ECR plasma by optical emission spectroscopy

Yue Chen, Xiaodong Zhu
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
导出引用
  • 本文利用多道高分辨发射光谱对电子回旋共振( ECR)激发氘负离子数密度进行了研究。基于Yacora氘原子碰撞辐射模型,结合氘原子分子谱线相对强度测量,估算了电子回旋共振激发的氘负离子密度。对ECR源区和扩散区不同位置的氘原子及氘分子特征谱线进行测量,发现源区的Dα特征谱线强度远高于Dβ的强度,Dα/Dβ比高达23,表明存在着D-中性化机制,选择性地增强了特征谱线强度;进一步拟合估算了源区的D-密度,约为3.6×1015 m-3;相对于源区,扩散区的D-密度大幅下降。由于ECR源区腔体小,等离子体和壁的相互作用较强,重组脱附过程会产生更多振动激发态氘分子,增强了解离附着反应,有利于氘负离子的产生;另一方面,ECR等离子体中源区与扩散区间存在的空间电场阻碍了氘负离子的轴向输运,氘负离子的产生和损失是局域性的;这些使源区与扩散区间存在较大的D-密度梯度。
    The electron cyclotron resonance (ECR) plasma is characterized by low working pressure and high dissociation rate, which has important applications in the deuterium negative ion D- source technology. In this paper, the Yacora collisional-radiative model is applied to the emission spectrum diagnosis of D- in ECR deuterium plasma. The D- density is estimated by using the Dα/Dβ ratio and the relative intensity of other deuterium molecular lines, which avoids complex calibration procedure of absolute intensity. The spatial structure of D- are studied by the multichannel emission spectroscopy measurements in the source and diffusion regions.
    The experiments are conducted on a 2.45 GHz ECR plasma source with a deuterium gas pressure of 1 Pa and microwave power of 660 W. The Balmer series of atomic deuterium (Dα, Dβ, Dγ, Dδ) and the Fulcher band Q-branches of molecular deuterium are measured at the source region and expanding region of the ECR plasma. It is found that the intensity of Dα in the source region is much higher than that of Dβ, and the Dα/Dβ ratio is as high as 23, indicating a selective enhancement of Balmer lines due to the mutual neutralization process of D-. Furthermore, D- density in the source region is estimated to be about 3.6×1015m-3, and the D- density in the expanding region decreases significantly. In ECR plasma source region, the plasma-wall interaction is strong due to the small volume of the cavity. The recombination desorption process produces more vibrationally excited molecules, which further enhances the dissociation attachment reaction and is beneficial to the generation of deuterium negative ions. On the other hand, the axial electric field within the ECR plasma inhibits the axial transport of D-, suggesting that the production and loss of D- is localized. These characteristics of the ECR plasma source contribute to a large gradient of D- density between the source and expanding region.
  • [1]

    Bentounes J, Béchu S, Biggins F, Michau A, Gavilan L, Menu J, Bonny L, Fombaron D, Bès A, Lebedev Y A, Shakhatov V A, Svarnas P, Hassaine T, Lemaire J L, Lacoste A 2018 Plasma Sources Sci. Technol. 27 055015

    [2]

    Fantz U, Heger B 1998 Plasma Phys. Controlled Fusion 40 2023

    [3]

    Averkin S N, Gatsonis N A, Olson L 2015 IEEE Trans. Plasma Sci. 43 1926

    [4]

    Fantz U, Franzen P, Kraus W, Falter H D, Berger M, Christ K S, Froschle M, Gutser R, Heinemann B, Martens C, McNeely P, Riedl R, Speth E, Wunderlich D 2008 Rev Sci Instrum 79 02A511

    [5]

    Marini C, Agnello R, Duval B P, Furno I, Howling A A, Jacquier R, Karpushov A N, Plyushchev G, Verhaegh K, Guittienne P, Fantz U, Wünderlich D, Béchu S, Simonin A 2017 Nucl. Fusion 57 036024

    [6]

    Sharma S, Sahu D, Narayanan R, Kar S, Bandyopadhyay M, Chakraborty A, Singh M J, Tarey R D, Ganguli A 2022 J. Phys. Conf. Ser. 2244 012055

    [7]

    Alton G, Smithe D 1994 Rev. Sci. Instrum. 65 775

    [8]

    Zhao H, Sun L, Guo J, Lu W, Xie D, Hitz D, Zhang X, Yang Y 2017 Phys. Rev. Accel. Beams 20 094801

    [9]

    Ren H T, Peng S X, Xu Y, Zhao J, Lu P N, Chen J, Zhang A L, Zhang T, Guo Z Y, Chen J E 2014 Rev Sci Instrum 85 02A927

    [10]

    Torii H, Matsui S 2024 Journal of Vacuum Science & Technology A 42

    [11]

    Seker Z, Ozdamar H, Esen M, Esen R, Kavak H 2014 Applied surface science 314 46

    [12]

    Ke Y J, Sun X F, Chen X K, Tian L C, Zhang T P, Zheng M F, Jia Y H, Jiang H C 2017 Plasma Sci. Technol 19 095503

    [13]

    Li X, Zeng M, Liu H, Ning Z X, Yu D R 2023Acta Phys. Sin. 72199(李鑫, 曾明, 刘辉, 宁中喜, 于达仁2023 72 199)

    [14]

    Kurutz U, Friedl R, Fantz U 2017 Plasma Phys. Controlled Fusion 59 075008

    [15]

    Svarnas P, Breton J, Bacal M, Mosbach T 2006 Rev. Sci. Instrum. 77 532

    [16]

    Aleiferis S, Tarvainen O, Svarnas P, Bacal M, Béchu S 2016 J. Phys. D: Appl. Phys. 49 095203

    [17]

    Hill R N 1977 Phys. Rev. Lett. 38 643

    [18]

    Bacal M, Hamilton G W, Bruneteau A M, Doucet H J, Taillet J 1979 Rev Sci Instrum 50 719

    [19]

    O’Keefe A, Deacon D A G 1988 Rev. Sci. Instrum. 59 2544

    [20]

    Lee H, Kim W, Lee J, Park K S, Yoo J J, Atala A, Kim G H, Lee S J 2021 Appl Phys Rev 8 021405

    [21]

    Fantz U, Wünderlich D 2006 New J. Phys. 8 301

    [22]

    Heinemann B, Fantz U, Kraus W, Schiesko L, Wimmer C, Wünderlich D, Bonomo F, Fröschle M, Nocentini R, Riedl R 2017 New J. Phys. 19 015001

    [23]

    Furno I, Agnello R, Guittienne P, Howling A, Jacquier R, Plyushchev G, Stollberg C, Bechu S, Barbisan M, Fadone M 2020 EUROfusion Consortium

    [24]

    Berger M, Fantz U, Christ K S, Team N 2009 Plasma Sources Sci. Technol. 18 025004

    [25]

    Zhu B L, Yi K Y, Yang K, Ke W, Ma J X, Zhu X D 2019 Phys. Plasma 26 082107

    [26]

    Schulz-Von D G V, Dbele H F 1996 Plasma Chem. Plasma Process. 16 461

    [27]

    Zhou H Y, Wang L, Zhu X D, Ke B, Ding F, Wen X H, Wang Y N 2010 Rev Sci Instrum 81 033501

    [28]

    Aleiferis S, Svarnas P, Béchu S, Tarvainen O, Bacal M 2018 Plasma Sources Sci. Technol. 27 075015

    [29]

    Wünderlich D, Dietrich S, Fantz U 2009 J. Quant. Spectrosc. Radiat. Transfer 110 62

    [30]

    Wünderlich D, Fantz U 2016 Atoms 4 26

    [31]

    Hollmann E M, Brezinsek S, Brooks N H, Groth M, McLean A G, Pigarov A Y, Rudakov D L 2006 Plasma Phys. Controlled Fusion 48 1165

    [32]

    Lavrov B P, Pipa A V, Röpcke J 2006 Plasma Sources Sci. Technol. 15 135

    [33]

    Rayar M, Le Quoc H, Lacoste A, Latrasse L, Pelletier J 2009 Plasma Sources Sci. Technol. 18 025013

    [34]

    McNeely P, Wünderlich D 2011 Plasma Sources Sci. Technol. 20 045005

    [35]

    Dang J J, Chung K J, Hwang Y S 2016 Rev Sci Instrum 87 053503

    [36]

    Yoon J S, Kim Y W, Kwon D C, Song M Y, Chang W S, Kim C G, Kumar V, Lee B 2010 Rep. Prog. Phys. 73 116401

    [37]

    Méndez I, Gordillo-Vázquez F J, Herrero V J, Tanarro I 2006 J Phys Chem A 110 6060

    [38]

    Wu H M, Graves D B, Porteous R K 1995 Plasma Sources Sci. Technol. 4 22

    [39]

    Fu S L, Chen J F, Hu S J, Wu X Q, Lee Y, Fan S L 2006 Plasma Sources Sci. Technol. 15 187

    [40]

    Majstorović G L, Šišović N M 2015 Journal of Research in Physics 38-39 11

  • [1] 张雪雪, 贾鹏英, 冉俊霞, 李金懋, 孙换霞, 李雪辰. 辅助放电下刷状空气等离子体羽的放电特性和参数诊断.  , doi: 10.7498/aps.73.20231946
    [2] 漆亮文, 杜满强, 温晓东, 宋健, 闫慧杰. 同轴枪放电等离子体动力学与杂质谱特性.  , doi: 10.7498/aps.73.20240760
    [3] 杨丽君, 宋彩虹, 赵娜, 周帅, 武珈存, 贾鹏英. 大气压氩气刷形等离子体羽的特性研究.  , doi: 10.7498/aps.70.20202091
    [4] 张改玲, 滑跃, 郝泽宇, 任春生. 13.56 MHz/2 MHz柱状感性耦合等离子体参数的对比研究.  , doi: 10.7498/aps.68.20190071
    [5] 杜永权, 刘文耀, 朱爱民, 李小松, 赵天亮, 刘永新, 高飞, 徐勇, 王友年. 双频容性耦合等离子体相分辨发射光谱诊断.  , doi: 10.7498/aps.62.205208
    [6] 陈维, 黄骏, 李辉, 吕国华, 王兴权, 张国平, 王鹏业, 杨思泽. 氦-氧等离子体针灭活肺癌A549细胞.  , doi: 10.7498/aps.61.185203
    [7] 高著秀, 冯春华, 杨宣宗, 黄建国, 韩建伟. 微小碎片加速器同轴枪内等离子体轴向速度研究.  , doi: 10.7498/aps.61.145201
    [8] 王琪, 樊群超, 孙卫国, 冯灏. 精确研究NbN分子d1+b1+电子态跃迁的P线系发射光谱.  , doi: 10.7498/aps.61.043301
    [9] 李雪辰, 袁宁, 贾鹏英, 常媛媛, 嵇亚飞. 大气压等离子体针产生空气均匀放电特性研究.  , doi: 10.7498/aps.60.125204
    [10] 倪明江, 余量, 李晓东, 屠昕, 汪宇, 严建华. 大气压直流滑动弧等离子体工作特性研究.  , doi: 10.7498/aps.60.015101
    [11] 彭志敏, 丁艳军, 杨乾锁, 姜宗林. 基于OH自由基A2Σ + →X2Πr 电子带系发射光谱的温度测量技术.  , doi: 10.7498/aps.60.053302
    [12] 蒲昱东, 杨家敏, 靳奉涛, 张璐, 丁永坤. 辐射输运实验中的Al等离子体发射光谱研究.  , doi: 10.7498/aps.60.045210
    [13] 朱竹青, 王晓雷. 飞秒激光空气等离子体发射光谱的实验研究.  , doi: 10.7498/aps.60.085205
    [14] 高勋, 宋晓伟, 郭凯敏, 陶海岩, 林景全. 飞秒激光烧蚀硅表面产生等离子体的发射光谱研究.  , doi: 10.7498/aps.60.025203
    [15] 唐京武, 黄笃之, 易有根. Au激光等离子体X射线发射光谱的理论研究.  , doi: 10.7498/aps.59.7769
    [16] 牛田野, 曹金祥, 刘 磊, 刘金英, 王 艳, 王 亮, 吕 铀, 王 舸, 朱 颖. 低温氩等离子体中的单探针和发射光谱诊断技术.  , doi: 10.7498/aps.56.2330
    [17] 王志军, 董丽芳, 尚 勇. 电子助进化学气相沉积金刚石中发射光谱的蒙特卡罗模拟.  , doi: 10.7498/aps.54.880
    [18] 黄 松, 辛 煜, 宁兆元. 使用发射光谱对感应耦合CF4/CH4等离子体中C2基团形成机理的研究.  , doi: 10.7498/aps.54.1653
    [19] 叶超, 宁兆元, 程珊华. 电子回旋共振等离子体增强沉积氟化非晶碳薄膜的光学性质.  , doi: 10.7498/aps.50.2017
    [20] 宁兆元, 程珊华, 叶超. 电子回旋共振等离子体增强化学气相沉积a-CFx薄膜的化学键结构.  , doi: 10.7498/aps.50.566
计量
  • 文章访问数:  13
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-02-21

/

返回文章
返回
Baidu
map