搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双层反铁磁体K3Cu2F7 中轨道序驱动的自旋二聚化

陈东猛 刘大勇

引用本文:
Citation:

双层反铁磁体K3Cu2F7 中轨道序驱动的自旋二聚化

陈东猛, 刘大勇

Orbital ordering driven spin dimer state in double-layered antiferromagnet K3Cu2O7

Liu Da-Yong, Chen Dong-Meng
PDF
导出引用
  • 基于自旋-轨道-晶格Hamilton量,应用团簇自洽场方法,研究了双层钙钛矿结构材料K3Cu2F7基态的晶格、磁及轨道结构,发现近孤立的双层的对称破缺和Jahn-Teller晶格畸变使得Cu2+离子在每层内交替占据 z2-x2〉/ z2-y2〉轨道,进而导致双层的层间表现为强的反铁磁耦合,层内为弱的铁磁耦合.强反铁磁耦合导致层间
    Magnetic, orbital and lattice structures of K3Cu2F7 are determined by cluster self-consistent field approach based on the spin-orbital-lattice Hamiltonian. Symmetry breaking and Jahn-Teller distortion of approximately isolated bilayer cause Cu2+ ions alternatively to occupy  z2-x2〉/ z2-y2〉 orbitals in each layer. This orbital ordering occupation leads to the dominant intrabilayer antiferromagnetic coupling, which favors spin dimerization, and the weak intralayer ferromagnetic coupling. Due to absence of spin frustration resulting from the intralayer orbital arrangement and the weak ferromagnetic coupling satisfing Goodenough-Kanamori-Anderson (GKA)rule, the ground state is a stable spin dimer state. The spin singlet-triplet excitation gap obtained by bond-operator mean field method is about 326 K, which is close to the experimental value of 400 K. The present theory is also applicable to explaining the formation of spin dimer state in Cs3Cu2Cl4Br3.
    • 基金项目: 国家自然科学基金(批准号:10947125)和中国石油大学(华东)科研启动基金(批准号:Y081815)资助的课题.
    [1]

    Giamarchi T, Rueeggg C, Tchernyshyov O 2008 Nat. Phys. 4 198

    [2]

    Aczel A A, Kohama Y, Marcenat, Weickert F, Jaime M, Ayala-Valenzuela O E, McDonald R D, Luke G M 2009 Phys. Rev. Lett. 103 207203

    [3]

    Aczel A A, Jaime M, Ninios K, Chan H B, Balicas L, McDonald R D, Selesnic S D, Dabkowska H A, Luke G M 2009 Phys. Rev. B 79 100409(R)

    [4]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [5]

    Shu L, Chen Y G, Chen H 2004 Acta Phys. Sin. 53 902 (in Chinese) [殳 蕾、陈宇光、陈 鸿 2005 53 902]

    [6]

    Xu J, Wang Z G, Shi Y L, Chen Y G, Chen H 2004 Acta Phys. Sin. 53 3882 (in Chinese) [许 靖、王志国、石云龙、陈宇光、陈 鸿 2004 53 3882]

    [7]

    Liu H L, Wang Z G, Chen Y G, Shi Y L, Chen H 2005 Acta Phys. Ain. 54 2329 (in Chinese) [刘海莲、王志国、陈宇光、 石云龙、陈 鸿 2005 54 2329] 〖8] Liu H L, Wang Z G, Yang C Q, Shi Y L 2006 Acta Phys. Sin. 55 3688 (in Chinese) [刘海莲、王志国、杨成全、石云龙 2006 55 3688]

    [8]

    Ming X, Fan H G, Hu F, Wang C Z, Meng X, Huang Z F, Chen G 2008 Acta Phys. Sin. 57 2368 (in Chinese) [明 星、范厚刚、胡 方、王春忠、孟 醒、黄祖飞、陈 岗 2008 57 2368]

    [9]

    Jackeli G, Ivanow D A 2007 Phys. Rev. B 76 132407

    [10]

    Blundell S J, Lancaster T, Baker P J, Hayes W, Pratt F L, Atake T, Rana D S, Malik S K 2008 Phys. Rev. B 77 094424

    [11]

    Chapon L C, Stock C, Radaelli P G, Martin C 2008 arXiv:0807.0877

    [12]

    Yamada F, Ono T, Tanaka H, Yamaura J 2007 J. Phys. Soc. Jpn. 76 014708

    [13]

    Manaka H, Miyashita Y, Watanabe Y, Masuda T 2007 J. Phys. Soc. Jpn. 76 044710

    [14]

    Quintero-Castro D L, Lake B, Wheeler E M, Islam A T M N, Guidi T, Rule K C, Izaola Z, Russina M, Kiefer K, Skourski Y 2010 Phys. Rev. B 81 014415

    [15]

    Hirakawa K, Ikeda H 1973 J. Phys. Soc. Jpn. 35 1328

    [16]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945

    [17]

    Binggeli N, Altarelli M 2004 Phys. Rev. B 70 085517

    [18]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

    [19]

    Kanamori J 1960 J. Appl. Phys. 31 14S

    [20]

    Van Vleck J H 1939 J. Chem. Phys. 7 72

    [21]

    Zou L J, Liu H Q, Zheng Q Q 1998 J. Appl. Phys. 83 7363

    [22]

    Chen D M, Zou L J 2007 Int. J. Mod. Phys. B 21 691

    [23]

    Liu D Y, Lu F, Zou L J 2009 J. Phys. : Condens. Matter 21 026014

    [24]

    Liu D Y, Chen D M, Zou L J 2009 Chin. Phys. B 18 4497

    [25]

    Herdtweck V E, Babel D 1981 Z. Anorg. Allg. Chem. 474 113

    [26]

    Goodenough J B 1958 Phys. Chem. Solids 6 287

    [27]

    Sachdev S, Bhatt R 1990 Phys. Rev. B 41 9323

    [28]

    Matsushita Y, Gelfand M P, Ishii C 1998 J. Phys. Soc. Jpn. 68 247

    [29]

    Yu D K, Gu Q, Wang H T, Shen J L 1999 Acta Phys. Sin. 48 S169 (in Chinese) [于登科、顾 强、汪汉廷、沈觉涟 1999 48 S169]

  • [1]

    Giamarchi T, Rueeggg C, Tchernyshyov O 2008 Nat. Phys. 4 198

    [2]

    Aczel A A, Kohama Y, Marcenat, Weickert F, Jaime M, Ayala-Valenzuela O E, McDonald R D, Luke G M 2009 Phys. Rev. Lett. 103 207203

    [3]

    Aczel A A, Jaime M, Ninios K, Chan H B, Balicas L, McDonald R D, Selesnic S D, Dabkowska H A, Luke G M 2009 Phys. Rev. B 79 100409(R)

    [4]

    Tokura Y, Nagaosa N 2000 Science 288 462

    [5]

    Shu L, Chen Y G, Chen H 2004 Acta Phys. Sin. 53 902 (in Chinese) [殳 蕾、陈宇光、陈 鸿 2005 53 902]

    [6]

    Xu J, Wang Z G, Shi Y L, Chen Y G, Chen H 2004 Acta Phys. Sin. 53 3882 (in Chinese) [许 靖、王志国、石云龙、陈宇光、陈 鸿 2004 53 3882]

    [7]

    Liu H L, Wang Z G, Chen Y G, Shi Y L, Chen H 2005 Acta Phys. Ain. 54 2329 (in Chinese) [刘海莲、王志国、陈宇光、 石云龙、陈 鸿 2005 54 2329] 〖8] Liu H L, Wang Z G, Yang C Q, Shi Y L 2006 Acta Phys. Sin. 55 3688 (in Chinese) [刘海莲、王志国、杨成全、石云龙 2006 55 3688]

    [8]

    Ming X, Fan H G, Hu F, Wang C Z, Meng X, Huang Z F, Chen G 2008 Acta Phys. Sin. 57 2368 (in Chinese) [明 星、范厚刚、胡 方、王春忠、孟 醒、黄祖飞、陈 岗 2008 57 2368]

    [9]

    Jackeli G, Ivanow D A 2007 Phys. Rev. B 76 132407

    [10]

    Blundell S J, Lancaster T, Baker P J, Hayes W, Pratt F L, Atake T, Rana D S, Malik S K 2008 Phys. Rev. B 77 094424

    [11]

    Chapon L C, Stock C, Radaelli P G, Martin C 2008 arXiv:0807.0877

    [12]

    Yamada F, Ono T, Tanaka H, Yamaura J 2007 J. Phys. Soc. Jpn. 76 014708

    [13]

    Manaka H, Miyashita Y, Watanabe Y, Masuda T 2007 J. Phys. Soc. Jpn. 76 044710

    [14]

    Quintero-Castro D L, Lake B, Wheeler E M, Islam A T M N, Guidi T, Rule K C, Izaola Z, Russina M, Kiefer K, Skourski Y 2010 Phys. Rev. B 81 014415

    [15]

    Hirakawa K, Ikeda H 1973 J. Phys. Soc. Jpn. 35 1328

    [16]

    Castellani C, Natoli C R, Ranninger J 1978 Phys. Rev. B 18 4945

    [17]

    Binggeli N, Altarelli M 2004 Phys. Rev. B 70 085517

    [18]

    Liechtenstein A I, Anisimov V I, Zaanen J 1995 Phys. Rev. B 52 R5467

    [19]

    Kanamori J 1960 J. Appl. Phys. 31 14S

    [20]

    Van Vleck J H 1939 J. Chem. Phys. 7 72

    [21]

    Zou L J, Liu H Q, Zheng Q Q 1998 J. Appl. Phys. 83 7363

    [22]

    Chen D M, Zou L J 2007 Int. J. Mod. Phys. B 21 691

    [23]

    Liu D Y, Lu F, Zou L J 2009 J. Phys. : Condens. Matter 21 026014

    [24]

    Liu D Y, Chen D M, Zou L J 2009 Chin. Phys. B 18 4497

    [25]

    Herdtweck V E, Babel D 1981 Z. Anorg. Allg. Chem. 474 113

    [26]

    Goodenough J B 1958 Phys. Chem. Solids 6 287

    [27]

    Sachdev S, Bhatt R 1990 Phys. Rev. B 41 9323

    [28]

    Matsushita Y, Gelfand M P, Ishii C 1998 J. Phys. Soc. Jpn. 68 247

    [29]

    Yu D K, Gu Q, Wang H T, Shen J L 1999 Acta Phys. Sin. 48 S169 (in Chinese) [于登科、顾 强、汪汉廷、沈觉涟 1999 48 S169]

  • [1] 张俊廷, 吴宗铄, 沈小凡. 姜泰勒扭曲和轨道序诱导的二维铁磁性.  , 2024, 73(1): 017101. doi: 10.7498/aps.73.20231252
    [2] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析.  , 2023, 72(19): 198504. doi: 10.7498/aps.72.20230901
    [3] 侯博, 曾琦波. 非厄米镶嵌型二聚化晶格.  , 2022, 71(13): 130302. doi: 10.7498/aps.71.20220890
    [4] 龚冬良, 罗会仟. 铁基超导体中的反铁磁序和自旋动力学.  , 2018, 67(20): 207407. doi: 10.7498/aps.67.20181543
    [5] 杨明宇, 杨倩, 张勃, 张旭, 蔡颂, 薛玉龙, 周铁戈. 5d过渡金属原子掺杂六方氮化铝单层的磁性及自旋轨道耦合效应:可能存在的二维长程磁有序.  , 2017, 66(6): 063102. doi: 10.7498/aps.66.063102
    [6] 王强. 电子自旋共振研究Bi0.2Ca0.8MnO3纳米晶粒的电荷有序和自旋有序.  , 2015, 64(18): 187501. doi: 10.7498/aps.64.187501
    [7] 张宝龙, 王东红, 杨致, 刘瑞萍, 李秀燕. 合金团簇(FeCr)n中的非共线磁序和自旋轨道耦合效应.  , 2013, 62(14): 143601. doi: 10.7498/aps.62.143601
    [8] 王广涛, 张敏平, 李珍, 郑立花. KCrF3中的轨道有序及其成因.  , 2012, 61(3): 037102. doi: 10.7498/aps.61.037102
    [9] 刘昆, 宁传刚, 石砳磊, 苗雨润, 邓景康. 探测二茂铁外价轨道(e,2e)反应中的扭曲波效应.  , 2011, 60(2): 023402. doi: 10.7498/aps.60.023402
    [10] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究.  , 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [11] 刘忍肖, 陈胜利, 董鹏. 旋涂法快速制备双层二元胶体微球有序薄膜.  , 2009, 58(4): 2820-2828. doi: 10.7498/aps.58.2820
    [12] 李 瑞, 闫 冰, 赵书涛, 郭庆群, 连科研, 田传进, 潘守甫. CH3I分子的光解离的自旋-轨道从头计算.  , 2008, 57(7): 4130-4133. doi: 10.7498/aps.57.4130
    [13] 李宝河, 冯 春, 杨 涛, 翟中海, 滕 蛟, 于广华, 朱逢吾. Cu掺杂对FexPt1-x薄膜有序化的影响.  , 2006, 55(5): 2567-2571. doi: 10.7498/aps.55.2567
    [14] 李红红, 王 劼, 郭玉献, 王 峰. 利用X射线磁性圆二色吸收谱计算3d过渡族磁性原子的轨道和自旋磁矩.  , 2006, 55(5): 2633-2638. doi: 10.7498/aps.55.2633
    [15] 束正煌, 董锦明. 轨道序对半掺杂锰氧化物光学性质的影响.  , 2003, 52(11): 2918-2922. doi: 10.7498/aps.52.2918
    [16] 陶向明, 徐小军, 谭明秋. 非球对称势场与轨道有序化:NiO电子结构再研究.  , 2002, 51(11): 2602-2605. doi: 10.7498/aps.51.2602
    [17] 杜懋陆, 李兆民, 谌家军. d~3络合物零场分裂的双自旋-轨道耦合参数模型.  , 1995, 44(10): 1607-1614. doi: 10.7498/aps.44.1607
    [18] 傅荣堂, 孙鑫. 氢链中的Peierls机理(Ⅰ)——Hartree-Fock解的二聚化.  , 1992, 41(2): 213-220. doi: 10.7498/aps.41.213
    [19] 都有为, 邱子强, 唐焕, J. C. WALKER. 用穆斯堡尔效应研究YBa2Cu3O7-δ中的磁有序.  , 1990, 39(3): 472-478. doi: 10.7498/aps.39.472
    [20] 易孙圣, 刘益焕. 合金AgAuZn2的有序化.  , 1965, 21(4): 839-848. doi: 10.7498/aps.21.839
计量
  • 文章访问数:  8599
  • PDF下载量:  656
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-03-09
  • 修回日期:  2010-03-29
  • 刊出日期:  2010-05-05

/

返回文章
返回
Baidu
map