搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀土金属Dy/Pt/[Co/Pt]3磁性多层膜的自旋轨道矩研究

李栋 来艳萍 刘喜悦

引用本文:
Citation:

基于稀土金属Dy/Pt/[Co/Pt]3磁性多层膜的自旋轨道矩研究

李栋, 来艳萍, 刘喜悦

Investigation of spin-orbit torques in rare-earth Dy/Pt/[Co/Pt]3 magnetic multilayers

LI Dong, LAI Yan-Ping, LIU Xi-Yue
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 具有强自旋轨道耦合(SOC)效应的稀土金属因其可以产生自旋霍尔矩有望在低功耗磁信息存储、逻辑运算和神经元模拟器件中发挥潜在作用。本文选用重稀土金属镝(Dy)作为自旋源层,[Co/Pt]3作为磁性层构建Dy/Pt/[Co/Pt]3垂直磁化多层膜,探究了不同Dy层厚度对体系自旋轨道矩(SOT)效率以及SOT驱动磁矩翻转的影响规律。利用谐波锁相技术分析得到稀土金属Dy的内禀自旋霍尔角为0.260±0.039,自旋扩散长度为2.234±0.383 nm,表明Dy可以作为理想的自旋源材料。此外,基于体系类阻尼SOT效率的有效提升,临界翻转电流密度随Dy层厚度增加而逐渐降低,最低约为5.3×106 A/cm2。以上研究结果证实稀土金属Dy存在强的自旋霍尔效应,为设计低功耗SOT基自旋电子器件提供了有效路径。
    Spin-orbit torque (SOT) based on the spin-orbit coupling (SOC) effect has gained increasing attention in magnetic information storage, logical operation and neuron simulation devices because it can effectively manipulate magnetization switching, chiral magnetic domain wall, and magnetic skyrmion motions. Further improvement of the SOT efficiency and reduction of the driving current density are crucial scientific problems to be solved for high-density and low-power applications of SOT-based spintronic devices. The heavy rare-earth metal dysprosium (Dy) possesses a relatively strong SOC due to the partially filled f orbital electrons (4f10), which is expected to generate spin Hall torques. In this paper, the impact of Dy thicknesses on the SOT efficiency and SOT-driven magnetic reversal was explored in the Dy/Pt/[Co/Pt]3 magnetic multilayers, where the rare-earth Dy and [Co/Pt]3 were used as the spin-source layer and the perpendicularly magnetized ferromagnetic layer, respectively. A series of Dy/Pt/[Co/Pt]3 heterostructures with various Dy layer thicknesses (tDy) of 1, 3, 5 and 7 nm were fabricated by ultrahigh-vacuum magnetron sputtering. The perpendicular magnetic anisotropy, SOT efficiency, spin Hall angle and current-induced magnetization switching were characterized using the magnetic property and electrical transport measurements. The results showed that the switching field and magnetic anisotropic field decreased with an increase in tDy, revealing that the magnetic parameters can be regulated by the bottom Dy layer due to their structural sensitivity. However, both damping-like SOT efficiency and effective spin Hall angle (θSHeff) gradually increased with increasing tDy, indicating that the rare-earth Dy can provide additional spin current to enhance the SOT efficiency apart from the contribution of Pt/[Co/Pt]3. Particularly, the maximum θSHeff of 0.379±0.008 was achieved when tDy was 7 nm. According to the fitting analysis of the drift-diffusion model, the intrinsic spin Hall angle and spin diffusion length of the rare-earth Dy were extracted to be 0.260±0.039 and 2.234±0.383 nm, respectively, suggesting that Dy can be used as an ideal spin-source material. In addition, the critical switching current density (Jc) gradually decreased with the increase in tDy, and Jc reached a minimum value of approximately 5.3×106 A/cm2 at tDy=7 nm, which is primarily attributed to the increase of the damping-like SOT and slight decrease of the switching field. These results experimentally demonstrate a strong spin Hall effect of the rare-earth Dy, and provide a feasible route for designing SOT-based spintronic devices with low-power dissipation.
  • [1]

    Bhatti S, Sbiaa R, Hirohata A, Ohno H, Fukami S, Piramanayagam S N 2017 Mater. Today 20 530

    [2]

    Tudu B, Tiwari A 2017 Vacuum 146 329

    [3]

    Garello K, Avci C O, Miron I M, Baumgartner M, Ghosh A, Auffret S, Boulle O, Gaudin G, Gambardella P 2014 Appl. Phys. Lett. 105 212402

    [4]

    Resnati D, Goda A, Nicosia G, Miccoli C, Spinelli A S, Compagnoni C M, 2017 IEEE Electron Device Lett. 38 461

    [5]

    Yu G Q 2018 Nat. Electronics. 1 496–497

    [6]

    Cubukcu M, Boulle O, Mikuszeit N, Hamelin C, Brächer T, Lamard N, Cyrille M C, Buda-Prejbeanu L, Garello K, Miron I M 2018 IEEE Trans. Magn. 54 81

    [7]

    Liu L, Lee O J, Gudmundsen T J, Ralph D C, Buhrman R A 2012 Phys. Rev. Lett. 109 096602

    [8]

    Emori S, Bauer U, Ahn S M, Martinez E, Beach G S 2013 Nat. Mater. 12 611

    [9]

    Fert A, Cros V, Sampaio J 2013 Nat. Nanotechnol. 8 152–156

    [10]

    Liu J H, Wang Z D, Xu T, Zhou H A, Zhao L, Je S G, Im M Y, Fang L, Jiang W J 2022 Chin. Phys. Lett. 39 017501

    [11]

    Demidov V E, Urazhdin S, Ulrichs H, Tiberkevich V, Slavin A, Baither D, Schmitz G, Demokritov S O 2012 Nat. Mater. 11 1028

    [12]

    Li L Y, Chen L N, Liu R H, Du Y W 2020 Chin. Phys. B 29 117102

    [13]

    Miron I M, Garello K, Gaudin G, Zermatten P J, Costache M V, Auffret S, Bandiera S, Rodmacq B, Schuhl A, Gambardella P 2011 Nature 476 189

    [14]

    Pai C F, Ou Y, Henrique L, Vilela-Leão L H, Ralph D C, Buhrman R A 2015 Phys. Rev. B 92 064426

    [15]

    Liu L, Pai C F, Li Y, Tseng H W, Ralph D C, Buhrman R A 2012 Science 336 555

    [16]

    Haney P M, Lee H W, Lee K J, Manchon A, Stiles M D 2013 Phys. Rev. B 87 174411

    [17]

    Rojas-Sánchez J C, Reyren N, Laczkowski P, Savero W, Attané J P, Deranlot C, Jamet M, George J M, Vila L, Jaffrès H 2014 Phys. Rev. Lett. 112 106602

    [18]

    Zhang W, Han W, Jiang X, Yang S H, Parkin S S P 2015 Nat. Phys. 11 496

    [19]

    Nguyen M H, Ralph D C, Buhrman R A 2016 Phys. Rev. Lett. 116 126601

    [20]

    Zhang C, Fukami S, Watanabe K, Ohkawara A, Gupta S D, Sato H, Matsukura F, Ohno H 2016 Appl. Phys. Lett. 109 192405

    [21]

    Han J, Richardella A, Siddiqui S A, Finley J, Samarth N, Liu L 2017 Phys. Rev. Lett. 119 077702

    [22]

    Zheng Z Y, Zhang Y, Zhu D Q, Zhang K, Feng X Q, He Y, Chen L, Zhang Z Z, Liu D J, Zhang Y G, Amiri P K, Zhao W S 2020 Chin. Phys. B 29 078505

    [23]

    Lv W, Jia Z, Wang B, Lu Y, Luo X, Zhang B, Zeng Z, Liu Z 2018 ACS Appl. Mater. Interfaces 10 2843

    [24]

    Shao Q, Yu G, Lan Y W, Shi Y, Li M Y, Zheng C, Zhu X, Li L J, Amiri P K, Wang K L 2016 Nano Lett. 16 7514

    [25]

    Wang F, Shi G Y, Kim K W, Park H J, Jang J G, Tan H R, Lin M, Liu Y K, Kim T, Yang D S, Zhao S S, Lee K, Yang S H, Soumyanarayanan A, Lee K J, Yang H 2024 Nat. Mater. 23 768

    [26]

    Wei L J, Li Y H, Pu Y 2024 Acta Phys. Sin. 73 018501

    [27]

    Liu L, Qin Q, Lin W N, Li C J, Xie Q D, He S K, Shu X Y, Zhou C H, Lim Z, Yu J H, Lu W L, Li M S, Yan X B, Pennycook S J, Chen J S 2019 Nat. Nanotechnol. 14 939

    [28]

    Liu Q B, Li J W, Zhu L J, Lin X, Xie X Y, Zhu L J 2022 Phys. Rev. Appl. 18 054079

    [29]

    Zhu L J, Ralph D C, Buhrman R A 2018 Phys. Rev. Appl. 10 031001

    [30]

    Reynolds N, Jadaun P, Heron J T, Jermain C L, Gibbons J, Collette R, Buhrman R A, Schlom D G, Ralph D C 2017 Phys. Rev. B 95 064412

    [31]

    Ueda K, Pai C F, Tan A J, Mann M, Beach G S D 2016 Appl. Phys. Lett. 108 232405

    [32]

    Wong Q Y, Murapaka C, Law W C, Gan W L, Lim G J, Lew W S 2019 Phys. Rev. Appl. 11 024057

    [33]

    Jin T L, Law W C, Kumar D, Luo F L, Wong Q Y, Lim G J, Wang X, Lew W S, Piramanayagam S N 2020 APL Mater. 8 111111

    [34]

    Li D, Li M R, Lai Y P, Zhang W, Liu X Y, Quan Z Y, Xu X H 2024 Appl. Phys. Lett. 125 152403

    [35]

    Takeuchi Y, Zhang C L, Okada A, Sato H, Fukami S, Ohno H 2018 Appl. Phys. Lett. 112 192408

    [36]

    Li D, Ma R, Cui B S, Yun J J, Quan Z Y, Zuo Y L, Xi L, Xu X H 2020 Appl. Surf. Sci. 513 145768

    [37]

    Kim J, Sinha J, Hayashi M, Yamanouchi M, Fukami S, Suzuki T, Mitani S, Ohno H 2013 Nat. Mater. 12 240

    [38]

    Torrejon J, Kim J, Sinha J, Mitani S, Hayashi M, Yamanouchi M, Ohno H 2014 Nat. Commun. 5 4655

    [39]

    Hayashi M, Kim J, Yamanouchi M, Ohno H 2014 Phys. Rev. B 89 144425

    [40]

    Li D, Chen S W, Zuo Y L, Yun J J, Cui B S, Wu K, Guo X B, Yang D Z, Wang J B, Xi L 2018 Sci. Rep. 8 12959

    [41]

    Wu D, Yu G Q, Chen C T, Razavi S A, Shao Q M, Li X, Zhao B C, Wong K L, He C L, Zhang Z Z, Amiri P K, Wang K L 2016 Appl. Phys. Lett. 109 222401

    [42]

    Yu J W, Qiu X P, Legrand W, Yang H 2016 Appl. Phys. Lett. 109 042403

    [43]

    Liu L, Moriyama T, Ralph D C, Buhrman R A 2011 Phys. Rev. Lett. 106 036601

    [44]

    Wang X R, Meng A, Yao Y X, Lin F Y, Bai Y, Ning X B, Li B, Zhang Y, Nie T X, Shi S, Zhao W S 2024 Nano Lett. 24 6931−6938

  • [1] 何宇, 陈伟斌, 洪宾, 黄文涛, 张昆, 陈磊, 冯学强, 李博, 刘菓, 孙笑寒, 赵萌, 张悦. 热效应在电流驱动反铁磁/铁磁交换偏置场翻转中的显著作用.  , doi: 10.7498/aps.73.20231374
    [2] 魏陆军, 李阳辉, 普勇. 基于外尔半金属WTe2的自旋-轨道矩驱动磁矩翻转.  , doi: 10.7498/aps.73.20231836
    [3] 王可欣, 粟傈, 童良乐. 基于反铁磁的无外场辅助自旋轨道矩磁隧道结模型分析.  , doi: 10.7498/aps.72.20230901
    [4] 刘骏杭, 朱照照, 毕林竹, 王鹏举, 蔡建旺. 重金属缓冲层和覆盖层对TbFeCo超薄膜磁性及热稳定性的影响.  , doi: 10.7498/aps.72.20222239
    [5] 王日兴, 曾逸涵, 赵婧莉, 李连, 肖运昌. 自旋轨道矩协助自旋转移矩驱动磁化强度翻转.  , doi: 10.7498/aps.72.20222433
    [6] 杨萌, 白鹤, 李刚, 朱照照, 竺云, 苏鉴, 蔡建旺. 垂直各向异性Ho3Fe5O12薄膜的外延生长与其异质结构的自旋输运.  , doi: 10.7498/aps.70.20201737
    [7] 王日兴, 李雪, 李连, 肖运昌, 许思维. 三端磁隧道结的稳定性分析.  , doi: 10.7498/aps.68.20190927
    [8] 盛宇, 张楠, 王开友, 马星桥. 自旋轨道矩调控的垂直磁各向异性四态存储器结构.  , doi: 10.7498/aps.67.20180216
    [9] 俱海浪, 王洪信, 程鹏, 李宝河, 陈晓白, 刘帅, 于广华. 磁性多层膜CoFeB/Ni的垂直磁各向异性研究.  , doi: 10.7498/aps.65.247502
    [10] 于涛, 刘毅, 朱正勇, 钟汇才, 朱开贵, 苟成玲. Mo覆盖层对MgO/CoFeB/Mo结构磁各向异性的影响.  , doi: 10.7498/aps.64.247504
    [11] 俱海浪, 向萍萍, 王伟, 李宝河. MgO/Pt界面对增强Co/Ni多层膜垂直磁各向异性及热稳定性的研究.  , doi: 10.7498/aps.64.197501
    [12] 俱海浪, 李宝河, 吴志芳, 张璠, 刘帅, 于广华. Co/Ni多层膜垂直磁各向异性的研究.  , doi: 10.7498/aps.64.097501
    [13] 王日兴, 肖运昌, 赵婧莉. 垂直磁各向异性自旋阀结构中的铁磁共振.  , doi: 10.7498/aps.63.217601
    [14] 陈希, 刘厚方, 韩秀峰, 姬扬. CoFeB/AlOx/Ta及AlOx/CoFeB/Ta结构中垂直易磁化效应的研究.  , doi: 10.7498/aps.62.137501
    [15] 竺云, 韩娜. 引入纳米氧化层的CoFe/Pd双层膜结构中增强的垂直磁各向异性研究.  , doi: 10.7498/aps.61.167505
    [16] 刘娜, 王海, 朱涛. CoFeB/Pt多层膜的垂直磁各向异性研究.  , doi: 10.7498/aps.61.167504
    [17] 付艳强, 刘洋, 金川, 于广华. Pt插层对Co/FeMn界面的影响.  , doi: 10.7498/aps.58.7977
    [18] 冯春, 詹倩, 李宝河, 滕蛟, 李明华, 姜勇, 于广华. 利用FePt/Au多层膜结构制备垂直磁记录L10-FePt薄膜.  , doi: 10.7498/aps.58.3503
    [19] 史慧刚, 付军丽, 薛德胜. 非晶Fe89.7P10.3合金纳米线阵列的磁性研究.  , doi: 10.7498/aps.54.3862
    [20] 黄 阀, 李宝河, 杨 涛, 翟中海, 朱逢吾. 多层膜[Co85Cr15/Pt]20的磁性、垂直磁记录特性和微结构的关系.  , doi: 10.7498/aps.54.1841
计量
  • 文章访问数:  11
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-06

/

返回文章
返回
Baidu
map