搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控

焦宸 简粤 张爱霞 薛具奎

引用本文:
Citation:

自旋-轨道耦合玻色-爱因斯坦凝聚体激发谱及其有效调控

焦宸, 简粤, 张爱霞, 薛具奎

Excitation spectrum of tunable spin-orbit coupled Bose-Einstein condensates and its effective regulation

Jiao Chen, Jian Yue, Zhang Ai-Xia, Xue Ju-Kui
PDF
HTML
导出引用
  • 利用Bogoliubov理论研究了自由空间中可调自旋-轨道耦合玻色-爱因斯坦凝聚体(Bose-Einstein condensates, BECs)的激发谱. 通过高频近似得到具有两体相互作用时与时间无关的有效Floquet哈密顿量, 从而获得一种可调的自旋-轨道耦合和一种可由周期驱动拉曼耦合调控的有效两体相互作用. 基于系统有效的Floquet哈密顿量, 得到凝聚体具有相互作用时的色散关系, 发现周期驱动强度可以有效地调控色散关系的结构, 即周期驱动的拉曼耦合可以调控系统在零动量相与平面波相之间的相变. 进一步利用Bogoliubov理论得到系统的Bogoliubov-de-Gennes (BdG)方程, 分别研究了凝聚体在零动量相和平面波相中的激发谱. 发现零动量相中的激发谱均为声子激发, 且激发谱随周期驱动强度的增加表现出贝塞尔函数的行为; 平面波相中的激发谱存在声子激发和旋子激发, 当周期驱动强度增加时, 旋子模出现软化现象. 因此, 可以通过周期驱动拉曼耦合实时地调控自旋-轨道耦合BECs激发谱中的声子激发和旋子激发.
    In a recent experiment, the excitation spectrum of spin-orbit (SO) coupled Bose-Einstein condensates (BECs) of $^{87}{\rm{Rb}}$ atoms was studied by using Bragg spectroscopy, and the roton-maxon structure was found to exist in the excitation spectrum of magnetized phase. In addition, the roton-mode and its softening phenomenon are obtained by using various artificial SO couplings such as Rashba SO coupling and spin-orbital-angular-momentum coupling. However, the SO coupling strength in previous studies could not be controlled in real time, which limits the further study and precise regulation of the excitation spectrum of condensate. Thus, it is still an important topic to study how to regulate the SO coupling strength of the system through an external driving field, and further regulate the excitation spectrum of SO coupled BECs. In this work, the excitation spectrum of a tunable SO coupled BECs in free space is studied by using Bogoliubov theory. The time-independent effective Floquet Hamiltonian with two-body interaction is obtained in the high frequency approximation, and then a tunable SO coupling and an effective two-body interaction that can be regulated by the periodic driving of Raman coupling are obtained. Based on the effective Floquet Hamiltonian of the system, the dispersion relation of the BECs with interactions is numerically calculated. It is found that the periodic driving can effectively regulate the structure of the dispersion relation, which indicates that the periodic driving can regulate the phase transition between the zero-momentum phase and the plane wave phase. Then, the Bogoliubov-de-Gennes (BdG) equation of the system is obtained by using Bogoliubov theory. Moreover, the excitation spectrum of the BECs in the zero momentum phase and the plane wave phase are studied, respectively. Only the phonon excitation exists in the excitation spectrum of the zero momentum phase, and the excitation spectrum behaves as a Bessel function with the increase of the periodic driving strength. The phonon and roton excitations exist in the excitation spectrum of the plane wave phase, and the roton mode gradually softens with the increase of periodically driving strength. Therefore, the phonon and roton excitations in the excitation spectrum of SO coupled BECs can be regulated in real time by periodically driving Raman coupling.
      通信作者: 薛具奎, xuejk@nwnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12164042, 12264045, 11764039, 11865014, 11847304)、甘肃省自然科学基金(批准号: 17JR5RA076, 20JR5RA526)和甘肃省高等学校创新能力提升项目(批准号: 2020A-146, 2022A-011)资助的课题
      Corresponding author: Xue Ju-Kui, xuejk@nwnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12164042, 12264045, 11764039, 11865014, 11847304), the Natural Science Foundation of Gansu Province, China (Grant Nos. 17JR5RA076, 20JR5RA526), and the Innovation Capability Enhancement Project of Higher Education of Gansu Province, China (Grant Nos. 2020A-146, 2022A-011)
    [1]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 7336Google Scholar

    [5]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan Bo, Pan G S, Zhao B, Deng Y J, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [6]

    Qu C L, Hamner C, Gong M, Zhang C W, Engels P 2013 Phys. Rev. A 88 021604Google Scholar

    [7]

    LeBlanc L J, Beeler M C, Jiménez-García K, Perry A R, Sugawa S, Williams R A, Spielman I B 2013 New J. Phys. 15 073011Google Scholar

    [8]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y J, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [9]

    Hauke P, Cucchietti F M, Tagliacozzo L, Deutsch I, Lewenstein M 2012 Rep. Prog. Phys. 75 082401Google Scholar

    [10]

    Galitski V, Spielman I B 2013 Nature 494 7345Google Scholar

    [11]

    Zheng W, Yu Z Q, Cui X L, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [12]

    Goldman N, Juzeliünas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [13]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [14]

    Martone G I, Pepe F V, Facchi P, Pascazio S, Stringari S 2016 Phys. Rev. Lett. 117 125301Google Scholar

    [15]

    Li S, Wang H, Li F, Cui X L, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [16]

    Zhang D W, Fu L B, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 043609Google Scholar

    [17]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602Google Scholar

    [18]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301Google Scholar

    [19]

    Xu Y, Zhang Y P, Wu B 2013 Phys. Rev. A 87 013614Google Scholar

    [20]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402Google Scholar

    [21]

    Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G, Zhang X F 2018 Phys. Rev. A 97 063607Google Scholar

    [22]

    Merkl M, Jacob A, Zimmer F E, Öhberg P, Santos L 2010 Phys. Rev. Lett. 104 073603Google Scholar

    [23]

    Zhang Y P, Mossman M E, Busch T, Engels P, Zhang C W 2016 Front. Phys. 11 118103Google Scholar

    [24]

    Zhu Q Z, Zhang C W, Wu B 2012 Eur. Phys. Lett. 100 50003Google Scholar

    [25]

    Zhu Q Z, Wu B 2015 Chin. Phys. B 24 050507Google Scholar

    [26]

    Landau L 1941 Phys. Rev. 60 356

    [27]

    Khamehchi M A, Zhang Y P, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90 063624Google Scholar

    [28]

    Steinhauer J, Ozeri R, Katz N, Davidson N 2002 Phys. Rev. Lett. 88 120407Google Scholar

    [29]

    Santos L, Shlyapnikov G V, Lewenstein M 2003 Phys. Rev. Lett. 90 250403Google Scholar

    [30]

    O’Dell D H J, Giovanazzi S, Kurizki G 2003 Phys. Rev. Lett. 90 110402Google Scholar

    [31]

    Chen K J, Wu F, Hu J S, He L Y 2020 Phys. Rev. A 102 013316Google Scholar

    [32]

    Ravisankar R, Fabrelli H, Gammal A, Muruganandam P, Mishra P K 2021 Phys. Rev. A 104 053315Google Scholar

    [33]

    Chen Y Y, Lyu H, Xu Y, Zhang Y P 2022 New J. Phys. 24 073041Google Scholar

    [34]

    Zhang Y P, Chen G, Zhang C W 2013 Sci. Rep. 3 1Google Scholar

    [35]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [36]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [37]

    Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V, Spielman I B 2011 Nat. Phys. 7 531534

    [38]

    Achilleos V, Frantzeskakis D J, Kevrekidis P G, Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101Google Scholar

    [39]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139226Google Scholar

    [40]

    Salerno M, Abdullaev F Kh, Gammal A, Tomio L 2016 Phys. Rev. A 94 043602Google Scholar

  • 图 1  (a1), (a2)不同$ \chi $$ \delta $时最低能带结构; (b1), (b2)不同$ g_{12} $$ \delta $时最低能量对应的准动量与$ \chi $的关系. 其他参数为$ \varOmega_{0}=2.0 $, $ k_{0}=1.0 $$ g=1.0 $

    Fig. 1.  (a1), (a2) The lowest band structure for different $ \chi $ and $ \delta $; (b1), (b2) relationship between the quasi-momentum corresponding to the lowest energy and $ \chi $ for different $ g_{12} $ and $ \delta $. The other parameters are $ \varOmega_{0}=2.0 $, $ k_{0}=1.0 $ and $ g=1.0 $

    图 2  不同$ \chi $, $ g_{12} $, $ \delta $$ k_{0} $时零动量相的激发谱(较低的一支). 其他参数为$ g=1.0 $, $ \varOmega_{0}=2.0 $

    Fig. 2.  Excitation spectrum of zero-momentum phase (lower branch) for different $ \chi $, $ g_{12} $, $ \delta $ and $ k_{0} $. The other parameters are $ g=1.0 $, $ \varOmega_{0}=2.0 $

    图 3  不同参数下周期驱动强度$ \chi $对零动量相激发谱(较低的一支)的调控. 其他参数为q = 0.01, $ g=1.0 $$ \varOmega_{0}=2.0 $

    Fig. 3.  Regulation of the excitation spectrum (lower branch) in zero-momentum phase by periodic driving strength $ \chi $ under different parameters. The other parameters are q = 0.01, $ g=1.0 $ and $ \varOmega_{0}=2.0 $

    图 4  取不同$ \chi $$ \delta $时平面波相的激发谱(较低的一支). 其他参数为$ g=1.0 $, $ g_{12}=1.5 $, $ \varOmega_{0}=2.0 $$ k_{0}=2.0 $

    Fig. 4.  Excitation spectrum (lower branch) of the plane wave phase for different $ \chi $ and $ \delta $. The other parameters are $ g=1.0 $, $ g_{12}=1.5 $, $ \varOmega_{0}=2.0 $ and $ k_{0}=2.0 $

    Baidu
  • [1]

    Sinova J, Valenzuela S O, Wunderlich J, Back C H, Jungwirth T 2015 Rev. Mod. Phys. 87 1213Google Scholar

    [2]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045Google Scholar

    [3]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057Google Scholar

    [4]

    Lin Y J, Jiménez-García K, Spielman I B 2011 Nature 471 7336Google Scholar

    [5]

    Zhang J Y, Ji S C, Chen Z, Zhang L, Du Z D, Yan Bo, Pan G S, Zhao B, Deng Y J, Pan J W 2012 Phys. Rev. Lett. 109 115301Google Scholar

    [6]

    Qu C L, Hamner C, Gong M, Zhang C W, Engels P 2013 Phys. Rev. A 88 021604Google Scholar

    [7]

    LeBlanc L J, Beeler M C, Jiménez-García K, Perry A R, Sugawa S, Williams R A, Spielman I B 2013 New J. Phys. 15 073011Google Scholar

    [8]

    Ji S C, Zhang L, Xu X T, Wu Z, Deng Y J, Chen S, Pan J W 2015 Phys. Rev. Lett. 114 105301Google Scholar

    [9]

    Hauke P, Cucchietti F M, Tagliacozzo L, Deutsch I, Lewenstein M 2012 Rep. Prog. Phys. 75 082401Google Scholar

    [10]

    Galitski V, Spielman I B 2013 Nature 494 7345Google Scholar

    [11]

    Zheng W, Yu Z Q, Cui X L, Zhai H 2013 J. Phys. B: At. Mol. Opt. Phys. 46 134007Google Scholar

    [12]

    Goldman N, Juzeliünas G, Öhberg P, Spielman I B 2014 Rep. Prog. Phys. 77 126401Google Scholar

    [13]

    Li Y, Pitaevskii L P, Stringari S 2012 Phys. Rev. Lett. 108 225301Google Scholar

    [14]

    Martone G I, Pepe F V, Facchi P, Pascazio S, Stringari S 2016 Phys. Rev. Lett. 117 125301Google Scholar

    [15]

    Li S, Wang H, Li F, Cui X L, Liu B 2020 Phys. Rev. A 102 033328Google Scholar

    [16]

    Zhang D W, Fu L B, Wang Z D, Zhu S L 2012 Phys. Rev. A 85 043609Google Scholar

    [17]

    Ji A C, Sun Q, Xie X C, Liu W M 2009 Phys. Rev. Lett. 102 023602Google Scholar

    [18]

    Qi R, Yu X L, Li Z B, Liu W M 2009 Phys. Rev. Lett. 102 185301Google Scholar

    [19]

    Xu Y, Zhang Y P, Wu B 2013 Phys. Rev. A 87 013614Google Scholar

    [20]

    Liang Z X, Zhang Z D, Liu W M 2005 Phys. Rev. Lett. 94 050402Google Scholar

    [21]

    Wang L X, Dai C Q, Wen L, Liu T, Jiang H F, Saito H, Zhang S G, Zhang X F 2018 Phys. Rev. A 97 063607Google Scholar

    [22]

    Merkl M, Jacob A, Zimmer F E, Öhberg P, Santos L 2010 Phys. Rev. Lett. 104 073603Google Scholar

    [23]

    Zhang Y P, Mossman M E, Busch T, Engels P, Zhang C W 2016 Front. Phys. 11 118103Google Scholar

    [24]

    Zhu Q Z, Zhang C W, Wu B 2012 Eur. Phys. Lett. 100 50003Google Scholar

    [25]

    Zhu Q Z, Wu B 2015 Chin. Phys. B 24 050507Google Scholar

    [26]

    Landau L 1941 Phys. Rev. 60 356

    [27]

    Khamehchi M A, Zhang Y P, Hamner C, Busch T, Engels P 2014 Phys. Rev. A 90 063624Google Scholar

    [28]

    Steinhauer J, Ozeri R, Katz N, Davidson N 2002 Phys. Rev. Lett. 88 120407Google Scholar

    [29]

    Santos L, Shlyapnikov G V, Lewenstein M 2003 Phys. Rev. Lett. 90 250403Google Scholar

    [30]

    O’Dell D H J, Giovanazzi S, Kurizki G 2003 Phys. Rev. Lett. 90 110402Google Scholar

    [31]

    Chen K J, Wu F, Hu J S, He L Y 2020 Phys. Rev. A 102 013316Google Scholar

    [32]

    Ravisankar R, Fabrelli H, Gammal A, Muruganandam P, Mishra P K 2021 Phys. Rev. A 104 053315Google Scholar

    [33]

    Chen Y Y, Lyu H, Xu Y, Zhang Y P 2022 New J. Phys. 24 073041Google Scholar

    [34]

    Zhang Y P, Chen G, Zhang C W 2013 Sci. Rep. 3 1Google Scholar

    [35]

    Jiménez-García K, LeBlanc L J, Williams R A, Beeler M C, Qu C, Gong M, Zhang C, Spielman I B 2015 Phys. Rev. Lett. 114 125301Google Scholar

    [36]

    Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S 1999 Rev. Mod. Phys. 71 463Google Scholar

    [37]

    Lin Y J, Compton R L, Jiménez-García K, Phillips W D, Porto J V, Spielman I B 2011 Nat. Phys. 7 531534

    [38]

    Achilleos V, Frantzeskakis D J, Kevrekidis P G, Pelinovsky D E 2013 Phys. Rev. Lett. 110 264101Google Scholar

    [39]

    Bukov M, D’Alessio L, Polkovnikov A 2015 Adv. Phys. 64 139226Google Scholar

    [40]

    Salerno M, Abdullaev F Kh, Gammal A, Tomio L 2016 Phys. Rev. A 94 043602Google Scholar

  • [1] 邵凯花, 席忠红, 席保龙, 涂朴, 王青青, 马金萍, 赵茜, 石玉仁. 双组分玻色-爱因斯坦凝聚体中PT对称势下的异步量子Kármán涡街.  , 2024, 73(11): 110501. doi: 10.7498/aps.73.20232003
    [2] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学.  , 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [3] 王青青, 周玉珊, 王静, 樊小贝, 邵凯花, 赵月星, 宋燕, 石玉仁. 三体作用下准一维玻色-爱因斯坦凝聚体中表面带隙孤子及其稳定性.  , 2023, 72(10): 100308. doi: 10.7498/aps.72.20222195
    [4] 贺丽, 张天琪, 李可芯, 余增强. 双组分玻色-爱因斯坦凝聚体的混溶性.  , 2023, 72(11): 110302. doi: 10.7498/aps.72.20230001
    [5] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [6] 马赟娥, 乔鑫, 高瑞, 梁俊成, 张爱霞, 薛具奎. 可调自旋-轨道耦合玻色-爱因斯坦凝聚体的隧穿动力学.  , 2022, 71(21): 210302. doi: 10.7498/aps.71.20220697
    [7] 焦婧, 罗焕波, 李禄. 由正负磁单极对相互作用诱导的孤立狄拉克弦.  , 2021, 70(7): 071401. doi: 10.7498/aps.70.20201744
    [8] 张爱霞, 姜艳芳, 薛具奎. 光晶格中自旋轨道耦合玻色-爱因斯坦凝聚体的非线性能谱特性.  , 2021, 70(20): 200302. doi: 10.7498/aps.70.20210705
    [9] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [10] 李吉, 刘伍明. 梯度磁场中自旋-轨道耦合旋转两分量玻色-爱因斯坦凝聚体的基态研究.  , 2018, 67(11): 110302. doi: 10.7498/aps.67.20180539
    [11] 陈良超, 孟增明, 王鹏军. 87Rb玻色-爱因斯坦凝聚体的快速实验制备.  , 2017, 66(8): 083701. doi: 10.7498/aps.66.083701
    [12] 陈光平. 简谐+四次势中自旋轨道耦合旋转玻色-爱因斯坦凝聚体的基态结构.  , 2015, 64(3): 030302. doi: 10.7498/aps.64.030302
    [13] 李志, 曹辉. 自旋轨道耦合玻色-爱因斯坦凝聚体在尖端势垒散射中的Klein隧穿.  , 2014, 63(11): 110306. doi: 10.7498/aps.63.110306
    [14] 张波, 王登龙, 佘彦超, 张蔚曦. 方势阱中凝聚体的孤子动力学行为.  , 2013, 62(11): 110501. doi: 10.7498/aps.62.110501
    [15] 藤斐, 谢征微. 光晶格中双组分玻色-爱因斯坦凝聚系统的调制不稳定性.  , 2013, 62(2): 026701. doi: 10.7498/aps.62.026701
    [16] 刘超飞, 万文娟, 张赣源. 自旋轨道耦合的23Na自旋-1玻色-爱因斯坦凝聚体中的涡旋斑图的研究.  , 2013, 62(20): 200306. doi: 10.7498/aps.62.200306
    [17] 张蔚曦, 佘彦超, 王登龙. 计及两体和三体作用下的二维凝聚体中的孤子特性.  , 2011, 60(7): 070514. doi: 10.7498/aps.60.070514
    [18] 奚玉东, 王登龙, 佘彦超, 王凤姣, 丁建文. 双色光晶格势阱中玻色-爱因斯坦凝聚体的Landau-Zener隧穿行为.  , 2010, 59(6): 3720-3726. doi: 10.7498/aps.59.3720
    [19] 赵兴东, 谢征微, 张卫平. 玻色凝聚的原子自旋链中的非线性自旋波.  , 2007, 56(11): 6358-6366. doi: 10.7498/aps.56.6358
    [20] 薛卫东, 朱正和, 冉鸣, 王红艳, 邹乐西, 孙颖. U+CO体系的分子反应动力学研究.  , 2002, 51(11): 2503-2508. doi: 10.7498/aps.51.2503
计量
  • 文章访问数:  3707
  • PDF下载量:  139
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-03
  • 修回日期:  2023-01-08
  • 上网日期:  2023-02-01
  • 刊出日期:  2023-03-20

/

返回文章
返回
Baidu
map