Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ultrathin acoustic metasurface carpet cloaking based on Helmholtz resonances

Sui Yu-Mei He Zhao-Jian Bi Ren-Gui Kong Peng Wu Ji-En Zhao He-Ping Deng Ke

Citation:

Ultrathin acoustic metasurface carpet cloaking based on Helmholtz resonances

Sui Yu-Mei, He Zhao-Jian, Bi Ren-Gui, Kong Peng, Wu Ji-En, Zhao He-Ping, Deng Ke
PDF
HTML
Get Citation
  • With the development of metamaterials, the acoustic cloaking has attracted extensive attention due to its novel physics and potential applications. In recent years, based on the phase compensation modulation from Generalized Snell’s law and coordinate transformation, the acoustic cloakings in underwater and air have been widely and deeply studied. However, there is still an urgent need to design acoustic cloaks that are thinner and less affected by the incident angle of acoustic waves. Further, the designed cloaks should have a wider operating band and be more suitable for irregular objects.In this paper, an ultrathin curved acoustic metasurface carpet cloaking is studied by using of phase compensation modulation. The phase modulation is based on Helmholtz resonance (HR). The metasurface carpet is immersed in air, since the vibration mode of acoustic wave in the air is relatively single, thus the physical essence can be elucidated more clearly. The carpet cloak is composed of 52 Helmholtz resonant units, and the size of resonant unit is less than 0.2 of working wavelength.The phase change of HR unit is solved analytically by using the Generalized Snell’s law, and confirmed by the Multiphysics COMSOL software. The parameter effects of HR unit on the phase change are studied, demonstrating that the phase change of HR unit is sensitive to the change of height and radius of HR unit, while the change of width of HR cavity neck can make the phase of HR unit change smoothly. Therefore, when building 52 HR units, the width of the HR cavity neck is designed, and the height and radius of HR unit stay fixed.The simulating results demonstrate that the designed cloak works well in a frequency range from 5850 Hz to 7550 Hz. Also, we study the cloaking effect for oblique incidence, and the results show that the carpet cloak works well for incident angle less than 30°. To quantitatively analyze the bandwidth of the cloaking, we calculate the cosine similarity value. It elucidates that the value of the cloak is very close to that of the flat ground in a corresponding working frequency range. The cloak designed in this work is made of ultrathin Helmholtz Resonant structures. This cloak is simple and easy to realize and conducive to potential applications.
      Corresponding author: He Zhao-Jian, hezj@whu.edu.cn ; Kong Peng, kongpeng@jsu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11964011, 11764016).
    [1]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [2]

    Lu M H, Feng L, Chen Y F 2009 Mater. Today 12 34Google Scholar

    [3]

    Liao G X, Luan C C, Wang Z W, Liu J P, Yao X H, Fu J Z 2021 Adv. Mater. Technol. 6 2000787Google Scholar

    [4]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [5]

    Bi Y, Jia H, Sun Z, Yang Y, Zhao H, Yang J 2018 Appl. Phys. Lett. 112 223502Google Scholar

    [6]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [7]

    Guild M D, Haberman M R, Alù A 2012 Phys. Rev. B 86 104302Google Scholar

    [8]

    Wei Q, Cheng Y, Liu X J 2012 Phys. Rev. B 86 024303Google Scholar

    [9]

    Zhou Z, Huang S, Li D, Zhu J, Li Y 2022 Natl. Sci. Rev. 9 nwab171Google Scholar

    [10]

    Zhang Y, Tong Y 2021 Opt. Commun. 483 126590Google Scholar

    [11]

    Bi Y, Jia H, Lu W, Ji P, Yang J 2017 Sci. Rep. 7 1Google Scholar

    [12]

    Chen Y, Zheng M, Liu X, Bi Y, Sun Z, Xiang P, Yang J, Hu G 2017 Phys. Rev. B 95 180104Google Scholar

    [13]

    Sun Z, Sun X, Jia H, Bi Y, Yang J 2019 Appl. Phys. Lett. 114 094101Google Scholar

    [14]

    Hu W, Fan Y, Ji P, Yang J 2013 J. Appl. Phys. 113 024911Google Scholar

    [15]

    Zhang S, Xia C, Fang N 2011 Phys. Rev. Lett. 106 024301Google Scholar

    [16]

    Chen Y, Liu X, Hu G 2015 Sci. Rep. 5 15745Google Scholar

    [17]

    Guo J, Fang Y, Qu R, Zhang X 2023 Mater. Today 66 321Google Scholar

    [18]

    Ji W Q, Wei Q, Zhu X F, Wu D J 2019 J. Phys. D: Appl. Phys. 52 325302Google Scholar

    [19]

    Jiang Z, Liang Q, Li Z, Chen T, Li D, Hao Y 2020 Adv. Opt. Mater. 8 2000827Google Scholar

    [20]

    Díaz-Rubio A, Tretyakov S A 2017 Phys. Rev. B 96 125409Google Scholar

    [21]

    Li X S, Wang Y F, Chen A L, Wang Y S 2020 J. Phys. D: Appl. Phys. 53 195301Google Scholar

    [22]

    Zhang H, He J, Liu C, Ma F 2023 Appl. Acoust. 213 109639Google Scholar

    [23]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X 2015 Appl. Phys. Lett. 107 221906Google Scholar

    [24]

    Tang K, Qiu C, Ke M, Lu J, Ye Y, Liu Z 2015 Sci. Rep. 4 6517Google Scholar

    [25]

    Faure C, Richoux O, Félix S, Pagneux V 2016 Appl. Phys. Lett. 108 064103Google Scholar

    [26]

    Zhu Y, Assouar B 2019 Phys. Rev. B 99 174109Google Scholar

    [27]

    Zhou H T, Fan S W, Li X S, Fu W X, Wang Y F, Wang Y S 2020 Smart Mater. Struct. 29 065016Google Scholar

    [28]

    He J, Liang Q, Lv P, Wu Y, Chen T 2022 Appl. Acoust. 197 108957Google Scholar

    [29]

    Zhou H T, Fu W X, Wang Y F, Wang Y S, Laude V, Zhang C 2021 Mater. Des. 199 109414Google Scholar

    [30]

    Wang Y, Cheng Y, Liu X 2019 Sci. Rep. 9 1Google Scholar

    [31]

    Zhu Y, Fan X, Liang B, Cheng J, Jing Y 2017 Phys. Rev. X 7 021034Google Scholar

    [32]

    Yu G, Qiu Y, Li Y, Wang X, Wang N 2021 Phys. Rev. Appl. 15 064064Google Scholar

    [33]

    Guo J, Zhou J 2020 J. Phys. D: Appl. Phys. 53 505501Google Scholar

    [34]

    Ji G, Huber J 2022 Appl. Mater. Today 26 101260Google Scholar

    [35]

    Zhu Y, Hu J, Fan X, Yang J, Liang B, Zhu X, Cheng J 2018 Nat. Commun. 9 1632Google Scholar

    [36]

    Zhou P, Jia H, Bi Y, Liao B, Yang Y, Yan K, Zhang J, Yang J 2022 Phys. Rev. Appl. 18 014050Google Scholar

  • 图 1  利用反射波波前操纵的二维声学超表面地毯隐身示意图 (a)平坦地面; (b) 任意弯曲表面

    Figure 1.  Illustration of a 2D acoustic carpet cloaking metasurface for reflected wavefront manipulation: (a) Flat surface; (b) arbitrary curved surface.

    图 2  (a)地毯隐身超表面示意图, 弧形隐身斗篷及斗篷单个共振单元结构(红色框插图), 入射波从–z方向入射; (b), (c) 共振腔中r取不同值时单个共振单元反射相位随w的变化, 其中(b)入射波频率为3430 Hz, (c)入射波频率为6860 Hz; (d)共振腔中w取不同值时单个共振单元反射相位随h的变化; (e)共振腔中w取不同值时单个共振单元反射相位随r的变化; (f) 入射波频率为6860 Hz时, 弧形隐身斗篷中每个共振单元的反射相位(红色曲线)和由(5)式理论计算的相位(黑色曲线)

    Figure 2.  (a) Schematic sketch of the metasurface for carpet cloaking, the illustration of arc-shaped carpet cloak, inset showing the schematic diagram of the unit-cell for the carpet. The acoustic waves are incident from –z direction. The reflection phase of single HR unit varing with w for acoustic waves normal incidence with different frequency: (b) 3430 Hz; (c) 6860 Hz. For different w, the reflection phase of single HR unit varing with h (d) and varing with r (e) for acoustic waves normal incidence with frequence 6860 Hz. (f) The reflection phase of each HR unit in the designed AMCC (red curve) and that of theoretical calculation from Eq. (5) (black curve) for acoustic waves normal incidence with frequence 6860 Hz.

    图 3  (a)平面波分别垂直入射至平坦地面、弧形障碍物及覆盖于弧形障碍物上的斗篷时的反射声压场分布; (b) 5850, 7550 Hz频率下Z = 800 mm时归一化反射振幅; (c) 5850, 7550 Hz频率下Z = 800 mm时反射波阵面相位

    Figure 3.  (a) Reflected pressure field distributions for a plane wave impinging on the flat ground, the arc-shaped object and the arc-shaped cloak; the normalized reflection amplitudes (b) and reflected wavefront phases (c) which located at Z = 800 mm for the incident frequency 5850 Hz and 7550 Hz.

    图 4  平面波分别以10°和30°入射角斜入射至平坦地面、弧形障碍物及覆盖于弧形障碍物上的斗篷时的反射声压场分布

    Figure 4.  When the incident angles are 10° and 30°, the reflected pressure field distributions for a plane wave impinging on the flat ground, the arc-shaped object and the arc-shaped cloak.

    图 5  反射声波通过平坦地面、隐身斗篷和障碍物的CSI值

    Figure 5.  The CSI of reflected acoustic waves for flat ground, carpet cloak, and arc-shaped object.

    表 1  隐身斗篷每个共振单元颈宽w和半径r参数表

    Table 1.  Parameter list of neck width w and radii r of resonant unit in the cloak.

    序号w/mmr/mm序号w/mmr/mm
    12.9201.5140.3802.4
    24.4552.4150.4262.4
    34.4572.4160.4722.4
    44.4582.4170.5202.4
    54.4592.4180.5312.4
    64.4612.4190.6212.4
    74.4622.4200.6852.4
    80.0602.4210.7552.4
    90.1192.4220.8522.4
    100.1772.4230.9802.4
    110.2332.4241.2342.4
    120.2862.4251.5742.4
    130.3772.4263.7492.4
    DownLoad: CSV
    Baidu
  • [1]

    Cummer S A, Christensen J, Alù A 2016 Nat. Rev. Mater. 1 16001Google Scholar

    [2]

    Lu M H, Feng L, Chen Y F 2009 Mater. Today 12 34Google Scholar

    [3]

    Liao G X, Luan C C, Wang Z W, Liu J P, Yao X H, Fu J Z 2021 Adv. Mater. Technol. 6 2000787Google Scholar

    [4]

    Zigoneanu L, Popa B I, Cummer S A 2014 Nat. Mater. 13 352Google Scholar

    [5]

    Bi Y, Jia H, Sun Z, Yang Y, Zhao H, Yang J 2018 Appl. Phys. Lett. 112 223502Google Scholar

    [6]

    Chen H, Chan C T 2007 Appl. Phys. Lett. 91 183518Google Scholar

    [7]

    Guild M D, Haberman M R, Alù A 2012 Phys. Rev. B 86 104302Google Scholar

    [8]

    Wei Q, Cheng Y, Liu X J 2012 Phys. Rev. B 86 024303Google Scholar

    [9]

    Zhou Z, Huang S, Li D, Zhu J, Li Y 2022 Natl. Sci. Rev. 9 nwab171Google Scholar

    [10]

    Zhang Y, Tong Y 2021 Opt. Commun. 483 126590Google Scholar

    [11]

    Bi Y, Jia H, Lu W, Ji P, Yang J 2017 Sci. Rep. 7 1Google Scholar

    [12]

    Chen Y, Zheng M, Liu X, Bi Y, Sun Z, Xiang P, Yang J, Hu G 2017 Phys. Rev. B 95 180104Google Scholar

    [13]

    Sun Z, Sun X, Jia H, Bi Y, Yang J 2019 Appl. Phys. Lett. 114 094101Google Scholar

    [14]

    Hu W, Fan Y, Ji P, Yang J 2013 J. Appl. Phys. 113 024911Google Scholar

    [15]

    Zhang S, Xia C, Fang N 2011 Phys. Rev. Lett. 106 024301Google Scholar

    [16]

    Chen Y, Liu X, Hu G 2015 Sci. Rep. 5 15745Google Scholar

    [17]

    Guo J, Fang Y, Qu R, Zhang X 2023 Mater. Today 66 321Google Scholar

    [18]

    Ji W Q, Wei Q, Zhu X F, Wu D J 2019 J. Phys. D: Appl. Phys. 52 325302Google Scholar

    [19]

    Jiang Z, Liang Q, Li Z, Chen T, Li D, Hao Y 2020 Adv. Opt. Mater. 8 2000827Google Scholar

    [20]

    Díaz-Rubio A, Tretyakov S A 2017 Phys. Rev. B 96 125409Google Scholar

    [21]

    Li X S, Wang Y F, Chen A L, Wang Y S 2020 J. Phys. D: Appl. Phys. 53 195301Google Scholar

    [22]

    Zhang H, He J, Liu C, Ma F 2023 Appl. Acoust. 213 109639Google Scholar

    [23]

    Tian Y, Wei Q, Cheng Y, Xu Z, Liu X 2015 Appl. Phys. Lett. 107 221906Google Scholar

    [24]

    Tang K, Qiu C, Ke M, Lu J, Ye Y, Liu Z 2015 Sci. Rep. 4 6517Google Scholar

    [25]

    Faure C, Richoux O, Félix S, Pagneux V 2016 Appl. Phys. Lett. 108 064103Google Scholar

    [26]

    Zhu Y, Assouar B 2019 Phys. Rev. B 99 174109Google Scholar

    [27]

    Zhou H T, Fan S W, Li X S, Fu W X, Wang Y F, Wang Y S 2020 Smart Mater. Struct. 29 065016Google Scholar

    [28]

    He J, Liang Q, Lv P, Wu Y, Chen T 2022 Appl. Acoust. 197 108957Google Scholar

    [29]

    Zhou H T, Fu W X, Wang Y F, Wang Y S, Laude V, Zhang C 2021 Mater. Des. 199 109414Google Scholar

    [30]

    Wang Y, Cheng Y, Liu X 2019 Sci. Rep. 9 1Google Scholar

    [31]

    Zhu Y, Fan X, Liang B, Cheng J, Jing Y 2017 Phys. Rev. X 7 021034Google Scholar

    [32]

    Yu G, Qiu Y, Li Y, Wang X, Wang N 2021 Phys. Rev. Appl. 15 064064Google Scholar

    [33]

    Guo J, Zhou J 2020 J. Phys. D: Appl. Phys. 53 505501Google Scholar

    [34]

    Ji G, Huber J 2022 Appl. Mater. Today 26 101260Google Scholar

    [35]

    Zhu Y, Hu J, Fan X, Yang J, Liang B, Zhu X, Cheng J 2018 Nat. Commun. 9 1632Google Scholar

    [36]

    Zhou P, Jia H, Bi Y, Liao B, Yang Y, Yan K, Zhang J, Yang J 2022 Phys. Rev. Appl. 18 014050Google Scholar

  • [1] Bai Yu, Zhang Zhen-Fang, Yang Hai-Bin, Cai Li, Yu Dian-Long. Metasurface acoustic liner of engine based on asymmetric absorber. Acta Physica Sinica, 2023, 72(5): 054301. doi: 10.7498/aps.72.20222011
    [2] Yang Dong-Ru, Cheng Yong-Zhi, Luo Hui, Chen Fu, Li Xiang-Cheng. Double-split-ring structure based ultra-broadband and ultra-thin dual-polarization terahertz metasurface with half-reflection and half-transmission. Acta Physica Sinica, 2023, 72(15): 158701. doi: 10.7498/aps.72.20230471
    [3] Long Jie, Li Jiu-Sheng. Terahertz phase shifter based on phase change material-metasurface composite structure. Acta Physica Sinica, 2021, 70(7): 074201. doi: 10.7498/aps.70.20201495
    [4] Yin Yun-Qiao, Wu Hong-Wei. Magnetic mirror metasurfaces based on spoof surface plasmonic structures. Acta Physica Sinica, 2020, 69(23): 234101. doi: 10.7498/aps.69.20200514
    [5] Li Xin, Wu Li-Xiang, Yang Yuan-Jie. Enhanced near field focus steering of rectangular nanoslit metasurface structure. Acta Physica Sinica, 2019, 68(18): 187103. doi: 10.7498/aps.68.20190728
    [6] Yang Peng, Qin Jin, Xu Jin, Han Tian-Cheng. Ultrathin flexible transmission metamaterial absorber. Acta Physica Sinica, 2019, 68(8): 087802. doi: 10.7498/aps.68.20182225
    [7] Ding Chang-Lin, Dong Yi-Bao, Zhao Xiao-Peng. Research advances in acoustic metamaterials and metasurface. Acta Physica Sinica, 2018, 67(19): 194301. doi: 10.7498/aps.67.20180963
    [8] Zhang Yong-Yan, Wu Jiu-Hui, Zhong Hong-Min. Low-frequency wide-band mechanism of a new type acoustic metamaterial with negative modulus. Acta Physica Sinica, 2017, 66(9): 094301. doi: 10.7498/aps.66.094301
    [9] Hou Hai-Sheng, Wang Guang-Ming, Li Hai-Peng, Cai Tong, Guo Wen-Long. Ultra-thin broadband flat metasurface to focus electromagnetic waves and its application in high-gain antenna. Acta Physica Sinica, 2016, 65(2): 027701. doi: 10.7498/aps.65.027701
    [10] Guo Wen-Long, Wang Guang-Ming, Li Hai-Peng, Hou Hai-Sheng. Utra-thin single-layered high-efficiency focusing metasurface lens. Acta Physica Sinica, 2016, 65(7): 074101. doi: 10.7498/aps.65.074101
    [11] Sun Yan-Yan, Han Lu, Shi Xiao-Yu, Wang Zhao-Na, Liu Da-He. General laws of reflection and refraction for metasurface with phase discontinuity. Acta Physica Sinica, 2013, 62(10): 104201. doi: 10.7498/aps.62.104201
    [12] Cheng Yong-Zhi, Nie Yan, Gong Rong-Zhou, Wang Xian. Design of an ultrathin and wideband metamaterial absorber based on resistance film and fractal frequency selective surface. Acta Physica Sinica, 2013, 62(4): 044103. doi: 10.7498/aps.62.044103
    [13] Zhang Zhao-Hui, Han Kui, Cao Juan, Wang Fan, Yang Li-Juan. The influence of the structure of the organic ultra-film on friction. Acta Physica Sinica, 2012, 61(2): 028701. doi: 10.7498/aps.61.028701
    [14] Shen Hui-Jie, Wen Ji-Hong, Yu Dian-Long, Cai Li, Wen Xi-Sen. Research on a cylindrical cloak with active acoustic metamaterial layers. Acta Physica Sinica, 2012, 61(13): 134303. doi: 10.7498/aps.61.134303
    [15] Ding Chang-Lin, Zhao Xiao-Peng. Audible sound metamaterial. Acta Physica Sinica, 2009, 58(9): 6351-6355. doi: 10.7498/aps.58.6351
    [16] Meng Qing-Miao, Jiang Ji-Jian, Liu Jing-Lun, Deng De-Li. The generalized Stefan-Boltzmann’s law of Dilaton-Maxwell non-stationary black hole. Acta Physica Sinica, 2009, 58(1): 78-82. doi: 10.7498/aps.58.78
    [17] Lu Ya-Feng, Przybylski M., Wang Wen-Hong, Yan Long, Shi Yi-Sheng, Barthel J.. Structure and magnetism of Co ultrathin films grown on Pd/Cu(100) monolayer. Acta Physica Sinica, 2005, 54(11): 5405-5410. doi: 10.7498/aps.54.5405
    [18] Duan Yi-Shi, Feng Shi-Xiang. . Acta Physica Sinica, 1995, 44(9): 1373-1381. doi: 10.7498/aps.44.1373
    [19] TU LI-XUN, SUN YU-ZHEN. SUPERSTRUCTURES FORMED BY Ga ATOMS ON Ni (111) SURFACE. Acta Physica Sinica, 1985, 34(7): 964-967. doi: 10.7498/aps.34.964
    [20] XIONG SHI-JIE, CAI JIAN-HUA. ON THE ELECTRICAL CONDUCTION OF LUCS. Acta Physica Sinica, 1984, 33(3): 352-361. doi: 10.7498/aps.33.352
Metrics
  • Abstract views:  1936
  • PDF Downloads:  77
  • Cited By: 0
Publishing process
  • Received Date:  26 October 2023
  • Accepted Date:  13 December 2023
  • Available Online:  22 December 2023
  • Published Online:  20 March 2024

/

返回文章
返回
Baidu
map