Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band

Lu Zhan-Peng Xu Zhi-Hao

Citation:

Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band

Lu Zhan-Peng, Xu Zhi-Hao
PDF
HTML
Get Citation
  • In this work, we numerically study the localization properties in a quasi-periodically modulated one-dimensional cross-stitch lattice with a flat band. When $\varDelta\neq0$, it is found that there are two different quasi-periodic modulation frequencies in the system after the local transformation, and the competing modulation by two frequencies may lead to the reentrant localization transition in the system. By numerically solving the fractal dimension, the average inverse participation ratio, and the average normalized participation ratio, we confirm that the system can undergo twice localization transitions. It means that the system first becomes localized as the disorder increases, at some critical points, some of the localized states go back to the delocalized ones, and as the disorder further increases, the system again becomes fully localized. By the scalar analysis of the normalized participation ratio, we confirm that reentrant localization stably exists in the system. And the local phase diagram is also obtained. From the local phase diagram, we find that when $1.6<\varDelta<1.9$, the system undergoes a cascade of delocalization-localization-delocalization-localization transition by increasing λ. When $\varDelta=0$, there exists only one quasi-periodic modulation frequency in the system. And we analytically obtain the expressions of the mobility edges, which are in consistence with the numerical studies by calculating the fractal dimension. And the system exhibits one localization transition. This work could expand the understanding of the reentrant localization in a flat band system and offers a new perspective on the research of the reentrant localization transition.
      Corresponding author: Xu Zhi-Hao, xuzhihao@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 12375016), the Fundamental Research Program of Shanxi Province,China (Grant No. 20210302123442), the Open Research Fund of Beijing National Laboratory for Condensed Matter Physics, and the Fund for Shanxi “1331 Project” Key Subjects, China.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [4]

    Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404 850Google Scholar

    [5]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 85 2360Google Scholar

    [6]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [7]

    Mott N 1987 J. Phys. C 20 3075Google Scholar

    [8]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [9]

    Harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874Google Scholar

    [10]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [11]

    Longhi S 2019 Phys. Rev. B 100 125157Google Scholar

    [12]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [13]

    Segev M, Silberberg Y, Christodoulides D N 2013 Nat. Photonics 7 197Google Scholar

    [14]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [15]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [16]

    Wang Y C, Zhang L, Sun W, Poon T F J, Liu X J 2022 Phys. Rev. B 106 L140203Google Scholar

    [17]

    Zhou X C, Zhou Y J, Poon T F J, Zhou Q, Liu X J 2023 Phys. Rev. Lett. 131 176401Google Scholar

    [18]

    Roy N, Sharma A 2021 Phys. Rev. B 103 075124Google Scholar

    [19]

    Ahmed A, Roy N, Sharma A 2021 Phys. Rev. B 104 155137Google Scholar

    [20]

    Qi R, Cao J P, Jiang X P 2023 arXiv: 2306.03807 [cond-mat.dis-nn

    [21]

    Goblot V, Štrkalj A, Pernet N, Lado J L, Dorow C, Lemaître A, Gratiet L Le, Harouri A, Sagnes I, Ravets S, Amo A, Bloch J, Zilberberg O 2020 Nat. Phys. 16 832Google Scholar

    [22]

    Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202Google Scholar

    [23]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [24]

    Padhan A, Giri M K, Mondal S, Mishra T 2022 Phys. Rev. B 105 L220201Google Scholar

    [25]

    Zuo Z W, Kang D W 2022 Phys. Rev. A 106 013305Google Scholar

    [26]

    Aditya S, Sengupta K, Sen D 2023 Phys. Rev. B 107 035402Google Scholar

    [27]

    Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203Google Scholar

    [28]

    Qi R, Cao J P, Jiang X P 2023 Phys. Rev. B 107 224201Google Scholar

    [29]

    Nair P S, Joy D, Sanyal S 2023 arXiv: 2302.14053 [cond-mat.dis-nn

    [30]

    Li S Z, Li Z 2023 arXiv: 2304.11811 [cond-mat.dis-nn

    [31]

    Li S Z, Li Z 2023 arXiv: 2305.12321 [cond-mat.dis-nn

    [32]

    Wu C H, Fan J T, Chen G, Jia S T 2021 New J. Phys. 23 123048Google Scholar

    [33]

    Jiang X P, Qiao Y, Cao J P 2021 Chin. Phys. B 30 097202Google Scholar

    [34]

    Zhou L W, Han W Q 2022 Phys. Rev. B 106 054307Google Scholar

    [35]

    Han W Q, Zhou L W 2022 Phys. Rev. B 105 054204Google Scholar

    [36]

    Wang H Y, Zheng X H, Chen J, Xiao L T, Jia S T, Zhang L 2023 Phys. Rev. B 107 075128Google Scholar

    [37]

    Flach S, Leykam D, Bodyfelt J D, Matthies P, Desyatnikov A S 2014 Europhys. Lett. 105 30001Google Scholar

    [38]

    Wang H, Gao J H, Zhang F C 2013 Phys. Rev. B 87 155116Google Scholar

    [39]

    Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119Google Scholar

    [40]

    Lee S, Andreanov A, Flach S 2023 Phys. Rev. B 107 014204Google Scholar

    [41]

    Bodyfelt J D, Leykam D, Danieli C, Yu X, Flach S 2014 Phys. Rev. Lett. 113 236403Google Scholar

    [42]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [43]

    Cheng S J, Liu T 2023 Chin. Phys. B 32 027102Google Scholar

    [44]

    Gneiting C, Li Z, Nori F 2018 Phys. Rev. B 98 134203Google Scholar

    [45]

    Han J, Gneiting C, Leykam D 2019 Phys. Rev. B 99 224201Google Scholar

    [46]

    吴瑾, 陆展鹏, 徐志浩, 郭利平 2022 71 113702Google Scholar

    Wu J, Lu Z P, Xu Z H, Guo L P 2022 Acta Phys. Sin. 71 113702Google Scholar

    [47]

    Xu Z H, Huangfu H L, Zhang Y B, Chen S 2020 New J. Phys. 22 013036Google Scholar

    [48]

    DeGottardi W, Thakurathi M, Vishveshwara S, Sen D 2013 Phys. Rev. B 88 165111Google Scholar

    [49]

    Deng X, Ray S, Sinha S, Shlyapnikov G V, Santos L 2019 Phys. Rev. Lett. 123 025301Google Scholar

    [50]

    Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204Google Scholar

  • 图 1  一维十字型晶格示意图. 绿色虚线代表一个原胞. t代表胞内跃迁强度, J代表胞间跃迁强度

    Figure 1.  Schematic diagram of the cross-stitch lattice. Each unit cell with two sublattices (A and B) is shown in the green dotted box. t and J are the intracell and intercell hopping amplitudes.

    图 2  当$\varDelta=1.68$, $L=800$时, (a) ${\rm{MIPR}}$(蓝色虚线)和${\rm{MNPR}}$(红色实线)随着无序强度λ的变化, 灰色区域表示具有迁移率边的中间相区; 插图显示当$L=300$ (蓝色实线), 500 (深绿色实线), 800 (红色实线)和1500 (湖蓝色实线)时, ${\rm{MNPR}}$随无序强度λ的变化. (b)分形维度$\varGamma_{{i}}$随着本征态指标(eigenstates index)和无序强度λ的变化. 系统存在4个局域化转变点: $\lambda=0.27, $$ \; 2.01,\; 2.48$和2.83 (黑色虚线表示). 图中的颜色条代表分形维度$\varGamma_{{i}}$的大小

    Figure 2.  (a) ${\rm{MIPR}}$ (blue dashed line) and ${\rm{MNPR}}$ (red solid line) as a function of the disorder strength λ. The shaded regions represent the intermediate regimes with the mobility edges. The inset shows the ${\rm{MNPR}}$ as a function of the disorder strength λ for L = 300, 500, 800, and 1500, which are marked by blue, bottle green, red and lake blue lines, respectively. (b) The fractal dimension ${\varGamma}_i$ associated with the eigenstate indices as a function of λ. The colorbar indicates the magnitude of ${\varGamma}_i$. There exist four localization transition points $\lambda=0.27,\; 2.01,\; 2.48, $ and 2.83, which marked by the black lines. Other parameters: $\varDelta=1.68$ and $L=800$.

    图 3  (a)$\lambda=0.1$, (b)$\lambda=2.32$, (c)$\lambda=2.72$时, ${\rm{MNPR}}$随$1/L$变化. 这里, $\varDelta=1.68$

    Figure 3.  ${\rm{MNPR}}$ as a function of $1/L$ for (a)$\lambda=0.1$, (b) $\lambda=2.32$ and (c) $\lambda=2.72$, respectively. Here, $\varDelta=1.68$.

    图 4  $\varDelta{\text{-}}\lambda$参数平面内的局域化相图, 其中绿色区域表示完全扩展或局域相, 红蓝色区域表示具有迁移率边的中间相. 颜色条代表序参量η的大小. 这里$L=800$

    Figure 4.  Localization Phase diagram in the $\varDelta{\text{-}}\lambda$ plane, where the green regions denote the full extended or localized phase and the red and blue regions represent the intermediate phase the mobility edges. The colorbar represents values of η. Here, $L=800$.

    图 5  分形维度$\varGamma_{{i}}$随着调制强度λ和本征能量E的变化. 其中红色实线代表迁移率边的表达式(15). 图中的颜色条代表分形维度$\varGamma_{{i}}$的大小. 其他参数为: $L=800$, $t=1$

    Figure 5.  The $\varGamma_{{i}}$ of the eigenstates as a function of he disorder strength λ and the eigen energy E. The red solid line represents the analytical expression (15) of the mobility edge. The colorbar represents the values of $\varGamma_{{i}}$. Here, $L=800$ and $t=1$.

    Baidu
  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891Google Scholar

    [3]

    Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895Google Scholar

    [4]

    Chabanov A A, Stoytchev M, Genack A Z 2000 Nature 404 850Google Scholar

    [5]

    Pradhan P, Sridhar S 2000 Phys. Rev. Lett. 85 2360Google Scholar

    [6]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Silberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [7]

    Mott N 1987 J. Phys. C 20 3075Google Scholar

    [8]

    Aubry S, André G 1980 Ann. Isr. Phys. Soc. 3 18

    [9]

    Harper P G 1955 Proc. Phys. Soc. London Sect. A 68 874Google Scholar

    [10]

    Longhi S 2019 Phys. Rev. Lett. 122 237601Google Scholar

    [11]

    Longhi S 2019 Phys. Rev. B 100 125157Google Scholar

    [12]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109 106402Google Scholar

    [13]

    Segev M, Silberberg Y, Christodoulides D N 2013 Nat. Photonics 7 197Google Scholar

    [14]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [15]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [16]

    Wang Y C, Zhang L, Sun W, Poon T F J, Liu X J 2022 Phys. Rev. B 106 L140203Google Scholar

    [17]

    Zhou X C, Zhou Y J, Poon T F J, Zhou Q, Liu X J 2023 Phys. Rev. Lett. 131 176401Google Scholar

    [18]

    Roy N, Sharma A 2021 Phys. Rev. B 103 075124Google Scholar

    [19]

    Ahmed A, Roy N, Sharma A 2021 Phys. Rev. B 104 155137Google Scholar

    [20]

    Qi R, Cao J P, Jiang X P 2023 arXiv: 2306.03807 [cond-mat.dis-nn

    [21]

    Goblot V, Štrkalj A, Pernet N, Lado J L, Dorow C, Lemaître A, Gratiet L Le, Harouri A, Sagnes I, Ravets S, Amo A, Bloch J, Zilberberg O 2020 Nat. Phys. 16 832Google Scholar

    [22]

    Zhai L J, Huang G Y, Yin S 2021 Phys. Rev. B 104 014202Google Scholar

    [23]

    Roy S, Mishra T, Tanatar B, Basu S 2021 Phys. Rev. Lett. 126 106803Google Scholar

    [24]

    Padhan A, Giri M K, Mondal S, Mishra T 2022 Phys. Rev. B 105 L220201Google Scholar

    [25]

    Zuo Z W, Kang D W 2022 Phys. Rev. A 106 013305Google Scholar

    [26]

    Aditya S, Sengupta K, Sen D 2023 Phys. Rev. B 107 035402Google Scholar

    [27]

    Roy S, Chattopadhyay S, Mishra T, Basu S 2022 Phys. Rev. B 105 214203Google Scholar

    [28]

    Qi R, Cao J P, Jiang X P 2023 Phys. Rev. B 107 224201Google Scholar

    [29]

    Nair P S, Joy D, Sanyal S 2023 arXiv: 2302.14053 [cond-mat.dis-nn

    [30]

    Li S Z, Li Z 2023 arXiv: 2304.11811 [cond-mat.dis-nn

    [31]

    Li S Z, Li Z 2023 arXiv: 2305.12321 [cond-mat.dis-nn

    [32]

    Wu C H, Fan J T, Chen G, Jia S T 2021 New J. Phys. 23 123048Google Scholar

    [33]

    Jiang X P, Qiao Y, Cao J P 2021 Chin. Phys. B 30 097202Google Scholar

    [34]

    Zhou L W, Han W Q 2022 Phys. Rev. B 106 054307Google Scholar

    [35]

    Han W Q, Zhou L W 2022 Phys. Rev. B 105 054204Google Scholar

    [36]

    Wang H Y, Zheng X H, Chen J, Xiao L T, Jia S T, Zhang L 2023 Phys. Rev. B 107 075128Google Scholar

    [37]

    Flach S, Leykam D, Bodyfelt J D, Matthies P, Desyatnikov A S 2014 Europhys. Lett. 105 30001Google Scholar

    [38]

    Wang H, Gao J H, Zhang F C 2013 Phys. Rev. B 87 155116Google Scholar

    [39]

    Ahmed A, Ramachandran A, Khaymovich I M, Sharma A 2022 Phys. Rev. B 106 205119Google Scholar

    [40]

    Lee S, Andreanov A, Flach S 2023 Phys. Rev. B 107 014204Google Scholar

    [41]

    Bodyfelt J D, Leykam D, Danieli C, Yu X, Flach S 2014 Phys. Rev. Lett. 113 236403Google Scholar

    [42]

    Danieli C, Bodyfelt J D, Flach S 2015 Phys. Rev. B 91 235134Google Scholar

    [43]

    Cheng S J, Liu T 2023 Chin. Phys. B 32 027102Google Scholar

    [44]

    Gneiting C, Li Z, Nori F 2018 Phys. Rev. B 98 134203Google Scholar

    [45]

    Han J, Gneiting C, Leykam D 2019 Phys. Rev. B 99 224201Google Scholar

    [46]

    吴瑾, 陆展鹏, 徐志浩, 郭利平 2022 71 113702Google Scholar

    Wu J, Lu Z P, Xu Z H, Guo L P 2022 Acta Phys. Sin. 71 113702Google Scholar

    [47]

    Xu Z H, Huangfu H L, Zhang Y B, Chen S 2020 New J. Phys. 22 013036Google Scholar

    [48]

    DeGottardi W, Thakurathi M, Vishveshwara S, Sen D 2013 Phys. Rev. B 88 165111Google Scholar

    [49]

    Deng X, Ray S, Sinha S, Shlyapnikov G V, Santos L 2019 Phys. Rev. Lett. 123 025301Google Scholar

    [50]

    Xu Z H, Xia X, Chen S 2021 Phys. Rev. B 104 224204Google Scholar

  • [1] Feng Xi-Xi, Chen Wen, Gao Xian-Long. Application of metric space method in quantum information in quasi-periodic systems. Acta Physica Sinica, 2024, 73(4): 040501. doi: 10.7498/aps.73.20231605
    [2] Gu Yan, Lu Zhan-Peng. Localization transition in non-Hermitian coupled chain. Acta Physica Sinica, 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [3] Liu Jing-Hu, Xu Zhi-Hao. Random two-body dissipation induced non-Hermitian many-body localization. Acta Physica Sinica, 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [4] Liu Hui, Lu Zhan-Peng, Xu Zhi-Hao. Delocalization-localization transitions in 1D non-Hermitian cross-stitch lattices. Acta Physica Sinica, 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [5] Ren Guo-Liang, Shen Kai-Bo, Liu Yong-Jia, Liu Ying-Guang. Thermal conduction mechanism of graphene-like carbon nitride structure (C3N). Acta Physica Sinica, 2023, 72(1): 013102. doi: 10.7498/aps.72.20221441
    [6] Chen Qi, Dai Yue, Li Fei-Yan, Zhang Biao, Li Hao-Chen, Tan Jing-Rou, Wang Xiao-Han, He Guang-Long, Fei Yue, Wang Hao, Zhang La-Bao, Kang Lin, Chen Jian, Wu Pei-Heng. Design and fabrication of superconducting single-photon detector operating in 5–10 μm wavelength band. Acta Physica Sinica, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [7] Liu Jia-Lin, Pang Ting-Fang, Yang Xiao-Sen, Wang Zheng-Ling. Skin effect in disordered non-Hermitian Su-Schrieffer-Heeger. Acta Physica Sinica, 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [8] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [9] Fu Cong, Ye Meng-Hao, Zhao Hui, Chen Yu-Guang, Yan Yong-Hong. Effects of intrachain disorder on photoexcitation in conjugated polymer chains. Acta Physica Sinica, 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [10] Xu Zhi-Hao, Huangfu Hong-Li, Zhang Yun-Bo. Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices. Acta Physica Sinica, 2019, 68(8): 087201. doi: 10.7498/aps.68.20182218
    [11] Liu Tong, Gao Xian-Long. Identifying the mobility edges in a one-dimensional incommensurate model with p-wave superfluid. Acta Physica Sinica, 2016, 65(11): 117101. doi: 10.7498/aps.65.117101
    [12] Hou Bi-Hui, Liu Feng-Yan, Yue Ming, Wang Ke-Jun. Localization of conduction electrons in nanometer metal Dy. Acta Physica Sinica, 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [13] Ding Rui, Jin Ya-Qiu, Ogura Hisanao. Stochastic functional analysis of propagation and localization of cylindrical wave in a two-dimensional random medium. Acta Physica Sinica, 2010, 59(6): 3674-3685. doi: 10.7498/aps.59.3674
    [14] Li Xiao-Chun, Gao Jun-Li, Liu Shao-E, Zhou Ke-Chao, Huang Bo-Yun. Disorder effect on the focus image of phononic crystal panel with negative refraction. Acta Physica Sinica, 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [15] Cao Yong-Jun, Yang Xu, Jiang Zi-Lei. Transmission property of elastic wave through one-dimensional compound materials. Acta Physica Sinica, 2009, 58(11): 7735-7740. doi: 10.7498/aps.58.7735
    [16] Wang Hui-Qin, Liu Zheng-Dong, Wang Bing. The spatial energy distribution and the spectrum characteristics in a two-dimensional random medium. Acta Physica Sinica, 2008, 57(9): 5550-5557. doi: 10.7498/aps.57.5550
    [17] Wang Hui-Qin, Liu Zheng-Dong, Wang Bing. The spatial distribution of optical field in random media with different filling densities of the same material particles. Acta Physica Sinica, 2008, 57(4): 2186-2191. doi: 10.7498/aps.57.2186
    [18] Cao Yong-Jun, Dong Chun-Hong, Zhou Pei-Qin. Transmission properties of one-dimensional qusi-periodical phononic crystal. Acta Physica Sinica, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [19] Xu Xing-Sheng, Chen Hong-Da, Zhang Dao-Zhong. Photon localization in amorphous photonic crystal. Acta Physica Sinica, 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [20] Liu Xiao-Liang, Xu Hui, Ma Song-Shan, Song Zhao-Quan. The localized properties of electronic states in one-dimensional disordered binary solid. Acta Physica Sinica, 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
Metrics
  • Abstract views:  2815
  • PDF Downloads:  179
  • Cited By: 0
Publishing process
  • Received Date:  27 August 2023
  • Accepted Date:  16 October 2023
  • Available Online:  02 November 2023
  • Published Online:  05 February 2024

/

返回文章
返回
Baidu
map