Search

Article

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Identifying the mobility edges in a one-dimensional incommensurate model with p-wave superfluid

Liu Tong Gao Xian-Long

Citation:

Identifying the mobility edges in a one-dimensional incommensurate model with p-wave superfluid

Liu Tong, Gao Xian-Long
PDF
Get Citation

(PLEASE TRANSLATE TO ENGLISH

BY GOOGLE TRANSLATE IF NEEDED.)

  • The mobility edges which separate the localized energy eigenstates from the extended ones exist normally only in three dimensional systems. For one-dimensional systems with random on-site potentials, one never encounters mobility edges, where all the eigenstates are localized. However, there are two kinds of 1D systems such as correlated disordered models, and the systems of exponentially decaying hopping kinetics, features of mobility edges at some specific values become possible. We study in this paper the properties of the mobility edges in a one-dimensional p-wave superfluid on an incommensurate lattice with exponentially decaying hopping kinetics. Without the p-wave superluid, the system displays a single mobility edge, which separates the extended regime from the localized one at a certain energy. Without the exponentially decaying hopping term, the system displays a phase transition from a topological superconductor to an Anderson localization at a certain disorder strength, where no mobility edge exists. We are interested in the influence of the p-wave superfluid on the mobility edge. By solving the Bogoliubov-de Gennes equation, the eigenvalues and the eigenfunctions are obtained. In order to identify the extending or the localized properties of the eigenvectors, we define an inverse participation ratio IPR. For an extended state, IPRn~1/L which goes to zero at a large L, and for a localized one, IPRn being constant. Therefore, the IPR can be taken as a criterion to distinguish the extended state from the localized one, while the mobility edge is defined as the boundary between two different states. We find that, with a p-wave superfluid, the system changes from a single mobility edge to a multiple one, and the number of mobility edges increases with the increased superfluid pairing order parameter. To further obtain the energy or the location of the mobility edge, we investigate the scaling behavior of wave functions by using a multifractal analysis, which is calculated through the scaling index . The minimum value of the index, with the values min= 1, 0min1, and min= 0, mean the extended, critical, and localized states, respectively. For the two consecutive states, the minima of the scaling index min when extrapolating to the large size limit between 0 and 1 signal the mobility edge. By exploring the corresponding Bogoliubov quasi-particle wave functions for the system under open boundary conditions together with the multifractal analysis for the system under periodic boundary conditions, we identify two mobility edges for the system of the p-wave superfluid pairing. Furthermore, we will investigate how the existence of the mobility edges influences the p-wave superfluid, and identify the phase diagram at the given parameters. We will in the future try to understand the relationship between the topological superfluid and the mobility edges.
      Corresponding author: Gao Xian-Long, gaoxl@zjnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11374266), the Program for New Century Excellent Talents in University, and the Natural Science Foundation of Zhejiang Province, China (Grant No. Z15A050001).
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clment D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891

    [3]

    Roati G, D' Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895

    [4]

    Aubry S, Andr G {1980 Ann. Isr. Phys. Soc. 3 18

    [5]

    Mott N 1987 J. Phys. C: Solid Stat. Phys. 20 3075

    [6]

    Hiramoto H, Kohmoto M 1989 Phys. Rev. B 40 8225

    [7]

    Zhou P Q, Fu X J, Guo Z Z, Liu Y Y 1995 Solid State Commun. 96 373

    [8]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601

    [9]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601

    [10]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268

    [11]

    Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113

    [12]

    Kitaev A Y 2001 Phys. Usp. 44 131

    [13]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [14]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [15]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [16]

    Motrunich O, Damle K, Huse D A 2001 Phys. Rev. B 63 224204

    [17]

    Brouwer P W, Furusaki A, Gruzberg I A, Mudry C 2000 Phys. Rev. Lett. 85 1064

    [18]

    Gruzberg I A, Read N, Vishveshwara S 2005 Phys. Rev. B 71 245124

    [19]

    Lobos A M, Lutchyn R M, Sarma S D 2012 Phys. Rev. Lett. 109 146403

    [20]

    Cai X M, Lang L J, Chen S, Wang Y P 2013 Phys. Rev. Lett. 110 176403

    [21]

    Ingold G L, Wobst A, Aulbach C, Hnggi P 2002 Eur. Phys. J. B 30 175

    [22]

    Thouless D J 1974 Phys. Rep. 13 93

    [23]

    Wang J, Liu X J, Gao X L, Hu H {2015 Phys. Rev. B 93 104504

    [24]

    Hiramoto H, Kohmoto M 1992 Int. J. Mod. Phys. B 06 281

    [25]

    Kohmoto M, Kadanoff L P, Tang C 1983 Phys. Rev. Lett. 50 1870

    [26]

    Ostlund S, Pandit R, Rand D, Schellnhuber H J, Siggia E D 1983 Phys. Rev. Lett. 50 1873

    [27]

    Kohmoto M 1983 Phys. Rev. Lett. 51 1198

    [28]

    Thouless D J 1983 Phys. Rev. B 28 4272

    [29]

    Kohmoto M, Tobe D 2008 Phys. Rev. B 77 134204

  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492

    [2]

    Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clment D, Sanchez-Palencia L, Bouyer P, Aspect A 2008 Nature 453 891

    [3]

    Roati G, D' Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M, Inguscio M 2008 Nature 453 895

    [4]

    Aubry S, Andr G {1980 Ann. Isr. Phys. Soc. 3 18

    [5]

    Mott N 1987 J. Phys. C: Solid Stat. Phys. 20 3075

    [6]

    Hiramoto H, Kohmoto M 1989 Phys. Rev. B 40 8225

    [7]

    Zhou P Q, Fu X J, Guo Z Z, Liu Y Y 1995 Solid State Commun. 96 373

    [8]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601

    [9]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601

    [10]

    Ivanov D A 2001 Phys. Rev. Lett. 86 268

    [11]

    Beenakker C W J 2013 Annu. Rev. Condens. Matter Phys. 4 113

    [12]

    Kitaev A Y 2001 Phys. Usp. 44 131

    [13]

    Hasan M Z, Kane C L 2010 Rev. Mod. Phys. 82 3045

    [14]

    Qi X L, Zhang S C 2011 Rev. Mod. Phys. 83 1057

    [15]

    Das A, Ronen Y, Most Y, Oreg Y, Heiblum M, Shtrikman H 2012 Nat. Phys. 8 887

    [16]

    Motrunich O, Damle K, Huse D A 2001 Phys. Rev. B 63 224204

    [17]

    Brouwer P W, Furusaki A, Gruzberg I A, Mudry C 2000 Phys. Rev. Lett. 85 1064

    [18]

    Gruzberg I A, Read N, Vishveshwara S 2005 Phys. Rev. B 71 245124

    [19]

    Lobos A M, Lutchyn R M, Sarma S D 2012 Phys. Rev. Lett. 109 146403

    [20]

    Cai X M, Lang L J, Chen S, Wang Y P 2013 Phys. Rev. Lett. 110 176403

    [21]

    Ingold G L, Wobst A, Aulbach C, Hnggi P 2002 Eur. Phys. J. B 30 175

    [22]

    Thouless D J 1974 Phys. Rep. 13 93

    [23]

    Wang J, Liu X J, Gao X L, Hu H {2015 Phys. Rev. B 93 104504

    [24]

    Hiramoto H, Kohmoto M 1992 Int. J. Mod. Phys. B 06 281

    [25]

    Kohmoto M, Kadanoff L P, Tang C 1983 Phys. Rev. Lett. 50 1870

    [26]

    Ostlund S, Pandit R, Rand D, Schellnhuber H J, Siggia E D 1983 Phys. Rev. Lett. 50 1873

    [27]

    Kohmoto M 1983 Phys. Rev. Lett. 51 1198

    [28]

    Thouless D J 1983 Phys. Rev. B 28 4272

    [29]

    Kohmoto M, Tobe D 2008 Phys. Rev. B 77 134204

  • [1] Lu Zhan-Peng, Xu Zhi-Hao. Reentrant localization phenomenon in one-dimensional cross-stitch lattice with flat band. Acta Physica Sinica, 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [2] Wu Jin, Lu Zhan-Peng, Xu Zhi-Hao, Guo Li-Ping. Mobility edges and reentrant localization induced by superradiance. Acta Physica Sinica, 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [3] Xu Zhi-Hao, Huangfu Hong-Li, Zhang Yun-Bo. Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices. Acta Physica Sinica, 2019, 68(8): 087201. doi: 10.7498/aps.68.20182218
    [4] Guo Hai-Jun, Duan Bao-Xing, Yuan Song, Xie Shen-Long, Yang Yin-Tang. Characteristic analysis of new AlGaN/GaN high electron mobility transistor with a partial GaN cap layer. Acta Physica Sinica, 2017, 66(16): 167301. doi: 10.7498/aps.66.167301
    [5] Zhang Li, Lin Zhi-Yu, Luo Jun, Wang Shu-Long, Zhang Jin-Cheng, Hao Yue, Dai Yang, Chen Da-Zheng, Guo Li-Xin. High breakdown voltage lateral AlGaN/GaN high electron mobility transistor with p-GaN islands buried buffer layer for power applications. Acta Physica Sinica, 2017, 66(24): 247302. doi: 10.7498/aps.66.247302
    [6] An Xia, Huang Ru, Li Zhi-Qiang, Yun Quan-Xin, Lin Meng, Guo Yue, Liu Peng-Qiang, Li Ming, Zhang Xing. Research progress of high mobility germanium based metal oxide semiconductor devices. Acta Physica Sinica, 2015, 64(20): 208501. doi: 10.7498/aps.64.208501
    [7] Liu Ya-Wen, Chen Yi-Wang, Xu Xin, Liu Zong-Xin. Implementation and analysis of the perfectly matched layer with auxiliary differential equation for the multiresolution time-domain method. Acta Physica Sinica, 2013, 62(3): 034101. doi: 10.7498/aps.62.034101
    [8] Zhang Li-Chao, Hou Lan-Tian, Zhou Gui-Yao. Study on dispersion compensation property of octagonal photonic crystal fibers. Acta Physica Sinica, 2011, 60(5): 054217. doi: 10.7498/aps.60.054217
    [9] Luo Shi-Hua, Zeng Jiu-Sun. Multi-fractal identification of the fluctuation of silicon content in blast furnace hot metal based on multi-resolution analysis. Acta Physica Sinica, 2009, 58(1): 150-157. doi: 10.7498/aps.58.150
    [10] Wei Wei, Hao Yue, Feng Qian, Zhang Jin-Cheng, Zhang Jin-Feng. Geometrical optimization of AlGaN/GaN field-plate high electron mobility transistor. Acta Physica Sinica, 2008, 57(4): 2456-2461. doi: 10.7498/aps.57.2456
    [11] Li Xiao, Zhang Hai-Ying, Yin Jun-Jian, Liu Liang, Xu Jing-Bo, Li Ming, Ye Tian-Chun, Gong Min. Research of breakdown characteristic of InP composite channel HEMT. Acta Physica Sinica, 2007, 56(7): 4117-4121. doi: 10.7498/aps.56.4117
    [12] Dai Yue-Hua, Chen Jun-Ning, Ke Dao-Ming, Sun Jia-E, Hu Yuan. An analytical model of mobility in nano-scaled n-MOSFETs. Acta Physica Sinica, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [13] LI ZHI-FENG, LU WEI, YE HONG-JUAN, YUAN XIAN-ZHANG, SHEN XUE-CHU, G.Li, S.J.Chua. OPTICAL SPECTROSCOPY STUDY ON CARRIER CONCENTRATION AND MOBILITY IN GaN. Acta Physica Sinica, 2000, 49(8): 1614-1619. doi: 10.7498/aps.49.1614
    [14] Lv YONG-LIANG, ZHOU SHI-PING, XU DE-MING. ANALYSIS OF PROPERTIES OF HIGH-ELECTRON-MOBILITY-TRANSISTOR UNDER OPTICAL ILLUMI NATION. Acta Physica Sinica, 2000, 49(7): 1394-1399. doi: 10.7498/aps.49.1394
    [15] Shen Wen-Zhong, Tang Wen-Guo, Shen Xue-Chu, A.Dimoulas. . Acta Physica Sinica, 1995, 44(5): 779-787. doi: 10.7498/aps.44.779
    [16] Shen Wen-Zhong, Tang Wen-Guo, Shen Xue-Chu, A.Dimonlas. . Acta Physica Sinica, 1995, 44(5): 825-831. doi: 10.7498/aps.44.825
    [17] WANG CHUAN-KUI, SUN JIN-ZUO, WANG JI-SUO, WANG WEN-ZHENG. MOBILITY EDGE IN THE AUBRY MODEL OF ONE-DIMENSIONAL INCOMMENSURATE SYSTEMS. Acta Physica Sinica, 1993, 42(1): 95-100. doi: 10.7498/aps.42.95
    [18] LIU YOU-YAN, ZHOU YI-CHANG. ON THE MOBILITY EDGES IN A ONE-DIMENSIONAL INCOMMENSURATE SYSTEMS. Acta Physica Sinica, 1988, 37(11): 1807-1813. doi: 10.7498/aps.37.1807
    [19] ZHENG ZHAO-BO, ZHU KAI. ELECTRONIC SPECTRA AND MOBILITY EDGES IN ONE-DIMENSIONAL INCOMMENSURATE SYSTEM. Acta Physica Sinica, 1987, 36(5): 623-629. doi: 10.7498/aps.36.623
    [20] ZHOU BING-LIN, CHEN ZHENG-XIU. ON THE LOW MOBILITY OF GaAs. Acta Physica Sinica, 1985, 34(4): 537-541. doi: 10.7498/aps.34.537
Metrics
  • Abstract views:  5543
  • PDF Downloads:  188
  • Cited By: 0
Publishing process
  • Received Date:  22 January 2016
  • Accepted Date:  28 March 2016
  • Published Online:  05 June 2016

/

返回文章
返回
Baidu
map