搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维准周期晶格中玻色子对的迁移率边

徐志浩 皇甫宏丽 张云波

引用本文:
Citation:

一维准周期晶格中玻色子对的迁移率边

徐志浩, 皇甫宏丽, 张云波

Mobility edges of bosonic pairs in one-dimensional quasi-periodical lattices

Xu Zhi-Hao, Huangfu Hong-Li, Zhang Yun-Bo
PDF
HTML
导出引用
  • 研究了一维非公度的准周期晶格中的玻色子对的迁移率边. 通过微扰方法, 解析推导出强相互作用极限下准周期晶格中玻色子对迁移率边的解析表达式, 通过数值证明在系统参数b较小时, 迁移率边的解析结果符合得较好, 而当b→1时, 解析结果将发生偏离.
    Mobility edge as one of the most important concepts in a disordered system in which there exists an energy dependent conductor-to-insulator transition has aroused great interest. Unlike an arbitrarily small disorder inducing the Anderson localization in one-dimensional random potential, the well-known Aubry-André model presents a metal-to-insulator transition without mobility edges. Some generalized Aubry-André models are proposed whose the mobility edges in compactly analytic forms are found. However, the existence of the many-body mobility edges in thermodynamic limit for an interacting disordered system is still an open question due to the dimension of the Hilbert space beyond the numerical capacity. In this paper, we demonstrate the existence of the mobility edges of bosonic pairs trapped in one dimensional quasi-periodical lattices subjected to strongly interactions. We believe that our theory will provide a new insight into the studying of the many-body mobility edges.Two strongly interacting bosons are trapped in an incommensurate model, which is described as $\hat H = - J\sum\limits_j{} {\left( {\hat c_j^\dagger {{\hat c}_{j + 1}} + {\rm{h}}{\rm{.c}}{\rm{.}}} \right)} + 2\lambda \sum\limits_j{} {\dfrac{{\cos \left( {2{\text{π}}\alpha j} \right)}}{{1 - b\cos \left( {2{\text{π}}\alpha j} \right)}}} {\hat n_j} + \dfrac{U}{2}\sum\limits_j{} {{{\hat n}_j}\left( {{{\hat n}_j} - 1} \right)} ,$ where there exists no interaction, the system displays mobility edges at $b\varepsilon = 2(J - \lambda )$, which separates the extended regime from the localized one and b = 0 is the standard Aubry-André model. By applying the perturbation method to the third order in a strong interaction case, we can induce an effective Hamiltonian for bosonic pairs. In the small b case, the bosonic pairs present the mobility edges in a simple closed expression form $b\left( {\dfrac{{{E^2}}}{U} - E - \dfrac{4}{E}} \right) = - 4\left(\dfrac{1}{E} + \lambda \right)$, which is the central result of the paper. In order to identify our results numerically, we define a normalized participation ratio (NPR) $\eta (E)$ to discriminate between the extended properties of the many-body eigenvectors and the localized ones. In the thermodynamic limit, the NPR tends to 0 for a localized state, while it is finite for an extended state. The numerical calculations finely coincide with the analytic results for b = 0 and small b cases. Especially, for the b = 0 case, the mobility edges of the bosonic pairs are described as $\lambda = - 1/E$. The extended regime and the one with the mobility edges will vanish with the interaction U increasing to infinity. We also study the scaling of the NPR with system size in both extended and localized regimes. For the extended state the NPR $\eta (E) \propto 1/L$ tends to a finite value with the increase of L and $L \to \infty $, while for the localized case, $\eta (E) \propto {(1/L)^2}$ tends to zero when $L \to \infty $. The $b \to 1$ limit is also considered. As the modulated potential approaches to a singularity when $b \to 1$, the analytic expression does not fit very well. However, the numerical results indicate that the mobility edges of bosonic pairs still exist. We will try to consider the detection of the mobility edges of the bosonic pairs in the future.
      通信作者: 徐志浩, xuzhihao@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11604188, 11234008, 11474189, 11674201)、山西省自然科学基金(批准号: 201601D201027)和山西省“1331工程”重点学科建设计划资助的课题.
      Corresponding author: Xu Zhi-Hao, xuzhihao@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604188, 11234008, 11474189, 11674201), the Natural Science Foundation of Shanxi Province, China (Grant No. 201601D201027), and the Fund for Shanxi "1331 Project" Key Subjects, China.
    [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Sarma S D, Song H, Xie X C 1988 Phys. Rev. L 61 2144Google Scholar

    [3]

    Hiramoto H, Kohmoto M 1989 Phys. Rev. B 40 8225Google Scholar

    [4]

    Sarma S D, Song He, Xie X C 1990 Phys. Rev. B 41 5544Google Scholar

    [5]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [6]

    Biddle J, Wang B, Priour D J, Sarma S D 2009 Phys. Rev. A 80 021603(R)Google Scholar

    [7]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [8]

    Hofstadter D R 1983 Phys. Rev. Lett. 51 1198Google Scholar

    [9]

    Lanini Y, Bromberg Y, Christodoulides D N, Silberberg Y 2010 Phys. Rev. Lett. 105 163905Google Scholar

    [10]

    Lanini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [11]

    Schwartz T 2007 Nature 44 652

    [12]

    Evers F, Mirlin A D 2007 Rev. Mod. Phys. 80 1355

    [13]

    Lüschen H K, Scherg S, Kohlert T, Schreiber M 2018 Phys. Rev. Lett. 120 160404Google Scholar

    [14]

    McGehee W R, Kondov S S, Xu W, Zirbel J J, DeMarco B 2013 Phys. Rev. Lett. 111 145303Google Scholar

    [15]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Sliberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [16]

    Aubry S, André G 1980 Ann. Isr.: Phys. Soc. 3 18

    [17]

    Aulbach C 2004 New J. Phys. 3 70

    [18]

    Eilmes A, Grimm U, Römer R A, Schreiber M 1999 Eur. Phys. J. B 8 547

    [19]

    Wiater D, Sowiński T, Zakrzewski J 2017 Phys. Rev. A 96 043629Google Scholar

    [20]

    Barelli A, Bellissard J, Jacquod P, Shepelyansky D L 1996 Phys. Rev. Lett. 77 4752Google Scholar

    [21]

    Shepelyansky D L 1996 Phys. Rev. B 54 14896Google Scholar

    [22]

    Dufour D, Orso G 2012 Phys. Rev. Lett. 109 155306Google Scholar

    [23]

    Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126Google Scholar

    [24]

    Lev Y B, Reichman D R 2014 Phys. Rev. B 89 220201(R)Google Scholar

    [25]

    Nag S, Garg A 2017 Phys. Rev. B 96 060203(R)Google Scholar

    [26]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J. B 89 77Google Scholar

    [27]

    Ponte P, Papić Z, Huveneers F 2015 Phys. Rev. B 751 55111

    [28]

    Velhinho M T, Pimentel I R, 2000 Phys. Rev. B 61 1043Google Scholar

    [29]

    Macé N, Laflorencie N, Alet F 2018 arXiv: 1811.01912

    [30]

    Li X P, Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 115 186601Google Scholar

    [31]

    Modak R, Mukerjee S 2015 Phys. Rev. Lett. 115 230401Google Scholar

    [32]

    Hsu Y T, Li X, Deng D L, Sarma S D 2018 Phys. Rev. Lett. 121 245701Google Scholar

  • 图 1  $b = 0$时, ${\rm{NPR}}$在不同的相互作用强度$U$下随无序强度$\lambda $和能量本征值E的变化 (a) $U = - 15$; (b) $U = - 20$; (c) $U = - 40$; (d) $U = - 100$; 蓝色的实线对应迁移率边的表达式; 这里取$L = 150$

    Fig. 1.  NPR varying with the disorder strengths $\lambda $ and the energy eigenvalues E for $b = 0$, $L = 150$ and different U: (a) U = –15; (b) U = –20; (c) U = –40; (d) U = –100. The blue solid line represents the analytical expression of the mobility edges.

    图 2  (a) $b = 0,\;U = - 100,\;E = - 100.044$时, $\lambda $分别为$0.008$$0.012$所对应本征态的密度分布; (b) $b = 0,\;U = - 100$时, 不同$\lambda $$E$所对应的本征态的${\rm{NPR}}$$1/L$的变化

    Fig. 2.  (a) Density distributions for $b = 0,\;U = - 100,\;E = - 100.044$, $\lambda = 0.008$ and $0.012$, respectively ; (b) NPR varying with $1/L$ for $b = 0,U = - 100$ and different $\lambda $ and $E$.

    图 3  (a) NPR在$L = 150$时随无序强度$\lambda $和能量本征值E的变化, 蓝色的实线对应迁移率边的表达式; (b) $\lambda =$0.048, $L = 150$时, 能量$E = - 20$${\rm{ - }}20.37$所对应的密度分布; (c) 不同能量的NPR在$\lambda =0.048$时随$1/L$的变化. 这里我们选取$b = 0.2$, $U = - 20$

    Fig. 3.  (a) NPR varying with the disorder strength $\lambda $ and the eigenvalues $E$ with $L = 150$, the blue solid line represents the analytical expression of the mobility edges; (b) density distributions for $\lambda = 0.048,L = 150$ and different $E = - 20$ and $ - 20.37$; (c) scaling of the NPR with system size for $\lambda = 0.048$ and different energies. Here, we choose $b = 0.2$ and $U = - 20$.

    图 4  (a), (b) 分别为$\lambda = 0.08$, $b = 0.5,0.96$时, $\left| {2\lambda \left( j \right)} \right|$$\left| {4\lambda {{\left( j \right)}^2}{\rm{/}}U} \right|$在格点上的分布情况; (c), (d) ${\rm{NPR}}$$L = 150$时随无序强度$\lambda $和能量本征值$E$的变化, 其参数与(a), (b)相同; 蓝色的实线对应迁移率边的表达式

    Fig. 4.  (a), (b) $\left| {2\lambda (j)} \right|$ and $\left| {4\lambda {{(j)}^2}/U} \right|$ changing with different sites $j$ for $\lambda = 0.08,b = 0.5$ and $0.96$, respectively; (c), (d) NPR varying with $\lambda $ and $E$ for $L = 150$ and with the same parameters as (a) and (b), respectively. The blue solid line represents the analytical expression of the mobility edges.

    Baidu
  • [1]

    Anderson P W 1958 Phys. Rev. 109 1492Google Scholar

    [2]

    Sarma S D, Song H, Xie X C 1988 Phys. Rev. L 61 2144Google Scholar

    [3]

    Hiramoto H, Kohmoto M 1989 Phys. Rev. B 40 8225Google Scholar

    [4]

    Sarma S D, Song He, Xie X C 1990 Phys. Rev. B 41 5544Google Scholar

    [5]

    Biddle J, Sarma S D 2010 Phys. Rev. Lett. 104 070601Google Scholar

    [6]

    Biddle J, Wang B, Priour D J, Sarma S D 2009 Phys. Rev. A 80 021603(R)Google Scholar

    [7]

    Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 114 146601Google Scholar

    [8]

    Hofstadter D R 1983 Phys. Rev. Lett. 51 1198Google Scholar

    [9]

    Lanini Y, Bromberg Y, Christodoulides D N, Silberberg Y 2010 Phys. Rev. Lett. 105 163905Google Scholar

    [10]

    Lanini Y, Avidan A, Pozzi F, Sorel M, Morandotti R, Christodoulides D N, Silberberg Y 2008 Phys. Rev. Lett. 100 013906Google Scholar

    [11]

    Schwartz T 2007 Nature 44 652

    [12]

    Evers F, Mirlin A D 2007 Rev. Mod. Phys. 80 1355

    [13]

    Lüschen H K, Scherg S, Kohlert T, Schreiber M 2018 Phys. Rev. Lett. 120 160404Google Scholar

    [14]

    McGehee W R, Kondov S S, Xu W, Zirbel J J, DeMarco B 2013 Phys. Rev. Lett. 111 145303Google Scholar

    [15]

    Lahini Y, Pugatch R, Pozzi F, Sorel M, Morandotti R, Davidson N, Sliberberg Y 2009 Phys. Rev. Lett. 103 013901Google Scholar

    [16]

    Aubry S, André G 1980 Ann. Isr.: Phys. Soc. 3 18

    [17]

    Aulbach C 2004 New J. Phys. 3 70

    [18]

    Eilmes A, Grimm U, Römer R A, Schreiber M 1999 Eur. Phys. J. B 8 547

    [19]

    Wiater D, Sowiński T, Zakrzewski J 2017 Phys. Rev. A 96 043629Google Scholar

    [20]

    Barelli A, Bellissard J, Jacquod P, Shepelyansky D L 1996 Phys. Rev. Lett. 77 4752Google Scholar

    [21]

    Shepelyansky D L 1996 Phys. Rev. B 54 14896Google Scholar

    [22]

    Dufour D, Orso G 2012 Phys. Rev. Lett. 109 155306Google Scholar

    [23]

    Basko D M, Aleiner I L, Altshuler B L 2006 Ann. Phys. 321 1126Google Scholar

    [24]

    Lev Y B, Reichman D R 2014 Phys. Rev. B 89 220201(R)Google Scholar

    [25]

    Nag S, Garg A 2017 Phys. Rev. B 96 060203(R)Google Scholar

    [26]

    Wang Y C, Hu H P, Chen S 2016 Eur. Phys. J. B 89 77Google Scholar

    [27]

    Ponte P, Papić Z, Huveneers F 2015 Phys. Rev. B 751 55111

    [28]

    Velhinho M T, Pimentel I R, 2000 Phys. Rev. B 61 1043Google Scholar

    [29]

    Macé N, Laflorencie N, Alet F 2018 arXiv: 1811.01912

    [30]

    Li X P, Ganeshan S, Pixley J H, Sarma S D 2015 Phys. Rev. Lett. 115 186601Google Scholar

    [31]

    Modak R, Mukerjee S 2015 Phys. Rev. Lett. 115 230401Google Scholar

    [32]

    Hsu Y T, Li X, Deng D L, Sarma S D 2018 Phys. Rev. Lett. 121 245701Google Scholar

  • [1] 古燕, 陆展鹏. 非厄米耦合链中的局域化转变.  , 2024, 73(19): 197101. doi: 10.7498/aps.73.20240976
    [2] 刘辉, 陆展鹏, 徐志浩. 一维非厄米十字晶格中的退局域-局域转变.  , 2024, 73(13): 137201. doi: 10.7498/aps.73.20240510
    [3] 刘敬鹄, 徐志浩. 随机两体耗散诱导的非厄米多体局域化.  , 2024, 73(7): 077202. doi: 10.7498/aps.73.20231987
    [4] 陆展鹏, 徐志浩. 具有平带的一维十字型晶格中重返局域化现象.  , 2024, 73(3): 037202. doi: 10.7498/aps.73.20231393
    [5] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制.  , 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [6] 刘佳琳, 庞婷方, 杨孝森, 王正岭. 无序非厄米Su-Schrieffer-Heeger中的趋肤效应.  , 2022, 71(22): 227402. doi: 10.7498/aps.71.20221151
    [7] 吴瑾, 陆展鹏, 徐志浩, 郭利平. 由超辐射引起的迁移率边和重返局域化.  , 2022, 71(11): 113702. doi: 10.7498/aps.71.20212246
    [8] 傅聪, 叶梦浩, 赵晖, 陈宇光, 鄢永红. 共轭聚合物链中光激发过程的无序效应.  , 2021, 70(11): 117201. doi: 10.7498/aps.70.20201801
    [9] 姜天舒, 肖孟, 张昭庆, 陈子亭. 周期与非周期传输线网络的物理与拓扑性质.  , 2020, 69(15): 150301. doi: 10.7498/aps.69.20200258
    [10] 王玉成, 刘雄军, 陈澍. 一维准周期晶格的性质及应用.  , 2019, 68(4): 040301. doi: 10.7498/aps.68.20181927
    [11] 刘通, 高先龙. 具有p波超流的一维非公度晶格中迁移率边研究.  , 2016, 65(11): 117101. doi: 10.7498/aps.65.117101
    [12] 王晓, 陈立潮, 刘艳红, 石云龙, 孙勇. 纵模对光子晶体中类狄拉克点传输特性的影响.  , 2015, 64(17): 174206. doi: 10.7498/aps.64.174206
    [13] 何龙, 宋筠. 双层石墨烯材料中无序导致超导-绝缘体相变的数值研究.  , 2013, 62(5): 057303. doi: 10.7498/aps.62.057303
    [14] 侯碧辉, 刘凤艳, 岳明, 王克军. 纳米金属镝的传导电子定域化.  , 2011, 60(1): 017201. doi: 10.7498/aps.60.017201
    [15] 李晓春, 高俊丽, 刘绍娥, 周科朝, 黄伯云. 无序对二维声子晶体平板负折射成像的影响.  , 2010, 59(1): 376-380. doi: 10.7498/aps.59.376
    [16] 赵义. 一维长程关联无序系统的局域性.  , 2010, 59(1): 532-535. doi: 10.7498/aps.59.532
    [17] 邓超生, 徐 慧, 刘小良, 伍晓赞. 无序度对一维长程关联无序系统中局域化-退局域化转变的影响.  , 2008, 57(4): 2415-2420. doi: 10.7498/aps.57.2415
    [18] 许兴胜, 陈弘达, 张道中. 非晶光子晶体中的光子局域化.  , 2006, 55(12): 6430-6434. doi: 10.7498/aps.55.6430
    [19] 刘小良, 徐 慧, 马松山, 宋招权. 一维无序二元固体中电子局域性质的研究.  , 2006, 55(6): 2949-2954. doi: 10.7498/aps.55.2949
    [20] 庞根弟, 蔡建华. 非均匀无序系统的声子局域化.  , 1988, 37(4): 688-690. doi: 10.7498/aps.37.688
计量
  • 文章访问数:  7178
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-17
  • 修回日期:  2019-02-20
  • 上网日期:  2019-04-01
  • 刊出日期:  2019-04-20

/

返回文章
返回
Baidu
map