-
Orbital angular momentum (OAM) lasers have potential applications in large capacity communication systems, laser processing, particle manipulation and quantum optics. OAM mode femtosecond fiber laser has become the research focus due to the advantages of simple structure, low cost and high peak power. At present, OAM mode femtosecond fiber lasers have made some breakthroughs in key parameters such as repetition frequency, pulse width, spectrum width, but it is difficult to achieve good overall performance. Besides, the repetition rate is tens of MHz at present. In this paper, a large-bandwidth mode coupler is made based on the mode phase matching principle. In coupler, the first order mode coupler with 3 dB polarization dependent loss is made by the technology of strong fused biconical taper, and the second order mode coupler with 0.3 dB polarization dependent loss is made by the technology of weak fused biconical taper. By combining the nonlinear polarization rotation mode-locking mechanism, OAM mode femtosecond fiber laser with over 100 MHz repetition rate is built. The achievement of the key parameters is attributed to the selection of dispersion shifted fibers that can accurately adjust intracavity dispersion. Comparing with traditional dispersion compensation fibers (DCF), the group velocity dispersion is reduced by an order of magnitude, so it can better adjust intracavity dispersion to achieve the indexes of large spectral bandwidth and narrow pulse width. In addition, the diameter of the fiber is 8 μm, which is the same as that of a single mode fiber. Comparing with DCF, the fusion loss can be ignored, so only a shorter gain Erbium-doped fiber is required, which ensures a shorter overall cavity length and achieves high repetition frequency. The experimental results show that the first order OAM mode fiber laser has 113.6 MHz repetition rate, 98 fs half-height full pulse width, and 101 nm 10 dB bandwidth. Second-order OAM mode fiber laser has 114.9 MHz repetition rate, 60 fs half-height full pulse width, and 100 nm 10 dB bandwidth. Compared with the reported schemes, our scheme has good performance in key parameters such as repetition rate, pulse width and spectral width. We believe that the OAM mode fiber laser with excellent performance is expected to be widely used in OAM communication, particle manipulation and other research fields.
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar
[3] Leach J, Jack B, Romero J, Jha A K, Yao A M, Frank-Arnold S, Ireland D G, Boyd R W, Barnett S M, Padgett M J 2010 Science 329 662Google Scholar
[4] Grier D 2003 Nature 424 810Google Scholar
[5] Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar
[6] Poynting J H 1909 Proc. R. Soc. London, Ser. A 82 560Google Scholar
[7] Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar
[8] Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar
[9] Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar
[10] Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[11] Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar
[12] Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar
[13] Li Y J, Jin L, Wu H, Gao S C, Feng Y H, Li Z H 2017 IEEE Photonics J. 9 7200909Google Scholar
[14] Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar
[15] Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar
[16] Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar
[17] He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar
[18] Pidishety S, Khudus M I M A, Gregg P, Ramachandran S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, CA, June 5–10, 2016 pSTu1F.2
[19] Li J, Ueda K, Musha M, Zhong L, Shirakawa A 2008 Opt. Lett. 33 2686Google Scholar
[20] Lin D, Xia K, Li J, Li R, Ueda K, Li G, Li X 2010 Opt. Lett. 35 2290Google Scholar
[21] Lin D, Xia K, Li R, Li X, Li G, Ueda K, Li J 2010 Opt. Lett. 35 3574Google Scholar
[22] Gui L, Wang C, Ding F, Chen H, Xiao X, Bozhevolnyi S, Zhang X, Xu K 2023 ACS Photonics 10 623
[23] Zhou N, Liu J, Wang J 2018 Sci. Rep. 8 11394Google Scholar
[24] Zhao Y, Wang T, Mao C, Yan Z, Liu Y, Wang T 2018 IEEE Photonics Technol. Lett. 30 752Google Scholar
[25] Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar
[26] Zhang Z, Wei W, Tang L, Yang J, Guo J, Ding L, Li Y 2018 Chin. Opt. Lett. 16 110501Google Scholar
[27] Wang T, Wang F, Shi F, Pang F, Huang S, Wang T, Zeng X 2017 J. Lightwave Technol. 35 2161Google Scholar
[28] Deng D, Zhan L, Gu Z, Gu Y, Xia Y 2009 Opt. Express 17 4284Google Scholar
[29] Park K, Song K, Kim Y, Lee J, Kim B 2016 Opt. Express 24 3543Google Scholar
[30] Zhou H, Dong J, Wang J, Li S, Cai X, Yu S, Zhang X 2017 IEEE Photonics Technol. Lett. 29 86Google Scholar
[31] Mao D, Feng T, Zhang W, Lu H, Jiang Y, Li P, Jiang B, Sun Z, Zhao J 2017 Appl. Phys. Lett. 110 021107Google Scholar
[32] Huang Y, Shi F, Wang T, Liu X, Zeng X, Pang F, Wang T, Zhou P 2018 Opt. Express 26 19171Google Scholar
[33] Tao R, Li H, Zhang Y, Yao P, Xu L, Gu C, Zhan Q 2020 Opt. Laser Technol. 123 105945Google Scholar
[34] Xiao R, Tu J, Li Wei, Gao S, Wen T, Du C, Zhou J, Zhang B, Liu W, Li Z 2022 Opt. Express 30 12605Google Scholar
[35] Jiang X, Yao J, Zhang S, Wang A, Zhan Q 2022 Appl. Phys. Lett. 121 131101Google Scholar
[36] Zhang W, Wei K, Mao D, Wang H, Gao F, Huang L, Mei T, Zhao J 2017 Opt. Lett. 42 454Google Scholar
[37] Lu J, Shi F, Meng L, Zhang L, Teng L, Luo Z, Yan P, Pang F, Zeng X 2020 Photonics Res. 8 1203Google Scholar
[38] Hu H, Chen Z, Cao Q, Zhan Q 2023 IEEE Photonics J. 15 1Google Scholar
[39] Xue X, Jiang Q, Pang F, Wen J, Chen W, Zeng X, Zhang L, Wei H, Wang T 2023 Opt. Express 31 24623Google Scholar
[40] Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C 2022 Adv. Photonics Nexus 1 016003
-
图 2 模式耦合器仿真图 (a), (b) 单模光纤中基模与特种光纤中的LP11模式和LP21模式之间能量分布随耦合长度z的变化; (c)—(e) LP11模式耦合器的模场分布图在半个耦合周期内的变化; (f)—(h) LP21模式耦合器的模场分布图在半个耦合周期内的变化
Figure 2. Simulation diagram of mode coupler: (a), (b) Change of energy distribution with coupling length z between fundamental mode in single-mode fiber and LP11 mode and LP21 mode in special fiber; (c)–(e) change of mode field distribution of LP11 mode coupler during a coupling period; (f)–(h) change of the mode field distribution of the LP21 mode coupler during a coupling period.
图 5 一阶OAM模式锁模激光器以及检测装置. OIM, 光学集成模块; EDF, 掺铒光纤; DSF, 色散位移光纤; SMF, 单模光纤; MSC, 模式选择耦合器; PC, 偏振控制器; ESA, 电谱仪; OSA, 光谱仪; OSC, 示波器; SLM, 空间光调制器; Obj, 物镜; Pol, 偏振器; HWP, 半波片; CCD, 电荷耦合元件
Figure 5. First-order OAM mode-locked laser and detector. OIM, optical integrated module, EDF, erbium-doped fiber; DSF, dispersion-shifted fiber; SMF, single-mode fiber; MSC, mode-selective coupler; PC, polarization controller; ESA, electrical spectrum analyzer; OSA, optical spectrum analyzer; OSC, oscilloscope; SLM, spatial light modulator; Obj, objective; POL, polarizer; HWP, half-wave plate; CCD, charge-coupled device.
图 6 一阶OAM模式锁模激光器的指标检测 (a) 激光器输出光谱; (b) 电谱仪测量下的频率成分; (c) 激光器输出锁模脉冲序列; (d) 自相关仪测量的洛伦兹拟合脉冲
Figure 6. Target detection of the first-order OAM mode-locked laser: (a) Output optical spectrum of laser; (b) frequency component measured by electrical spectrum analyzer; (c) output mode-locked pulse sequence of laser; (d) Lorentz mode-locked pulse measured by autocorrelator.
图 7 二阶OAM模式锁模激光器. OIM, 光学集成模块; EDF, 掺铒光纤; DSF, 色散位移光纤; SMF, 单模光纤; MSC, 模式选择耦合器; PC, 偏振控制器
Figure 7. Second-order OAM mode-locked laser and detector. OIM, optical integrated module; EDF, erbium-doped fiber; DSF, dispersion-shifted fiber; SMF, single-mode fiber; MSC, mode-selective coupler; PC, polarization controller.
图 8 二阶OAM模式锁模激光器的指标检测 (a) 激光器输出光谱; (b) 电谱仪测量下的频率成分; (c) 激光器输出锁模脉冲序列; (d) 自相关仪检测的洛伦兹拟合脉冲
Figure 8. Target detection of the second-order OAM mode-locked laser: (a) Output optical spectrum of laser; (b) frequency component measured by electrical spectrum analyzer; (c) output mode-locked pulse sequence of laser; (d) Lorentz fitting pulse measured by autocorrelator.
图 10 一阶和二阶模式激光器输出模场 (a) ${\text{LP}}_{11}^{{\text{even}}}$模式; (b) ${\text{LP}}_{11}^{{\text{odd}}}$模式; (c) ${\text{LP}}_{21}^{{\text{even}}} $模式; (d) ${\text{LP}}_{21}^{{\text{odd}}}$模式; (e) OAM–1模式; (f) OAM+1模式; (g) OAM–2模式; (h) OAM+2模式; (i)—(l) 分别代表着图(e)—(h)经过空间光调制器上加载的柱透镜相位调制后衍射的模场
Figure 10. Output mode fields of first-order mode and second-order mode laser: (a) ${\text{LP}}_{11}^{{\text{even}}}$ mode; (b) ${\text{LP}}_{11}^{{\text{odd}}}$mode; (c) ${\text{LP}}_{21}^{{\text{even}}}$mode; (d) ${\text{LP}}_{21}^{{\text{odd}}}$mode; (e) OAM–1 mode; (f) OAM+1 mode; (g) OAM–2 mode; (h) OAM+2 mode; (i)–(l) represent the mode fields of panels (e)–(h) diffracted by the spatial light modulator loading phase of the cylindrical lens.
表 1 当前其他激光器性能和指标与本文激光器的比较
Table 1. Performance and index of other lasers are compared with the laser in this paper.
参考文献/
模式耦合器工作机制 重复频率 中心波长/nm 输出光谱
宽度/nm输出脉宽 输出功率 模式 [31]/OSS 锁模 13.6 MHz 1550.5 0.34 6.87 ps — TE01, TM01 [27]/FBT 锁模 36.1 MHz 1547.4 56.5 273 fs 5.6 mW OAM±1 1545.0 67.6 140 fs OAM±2 [32]/FBT 锁模 26 MHz 1045.0 14 — 75 mW LP11 15.5 65 mW LP21 18 16 mW LP02 [33]/LPFG 锁模 9.83 MHz 1030.0 5 168 ps 15 mW CVB [34]/LPFG QSW 30.7 kHz 1548.2 0.4 5.2 μs 1.3 μW OAM±3 [35]/FBG 锁模 10.16 MHz 1549.4 0.08 52.87 ps 17.16 mW OAM0,
OAM±1[36]/AIFG 锁模 4.835 MHz 1532.9 <0.1 400 ps 30 mW OAM±1 [37]/AIFG 锁模 25 MHz 1560.0 10 384 fs — OAM±1 [38]/Space 锁模 33 MHz 1030.0 18 87 fs 108 mW OAM±1 本文/FBT 锁模 114 MHz 1550.0 101
10098 fs 40 mW OAM±1 115 MHz 100 60 fs 4 mW OAM±2 -
[1] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185Google Scholar
[2] Wen Y, Chremmos I, Chen Y, Zhu G, Zhang J, Zhu J, Zhang Y, Liu J, Yu S 2020 Optica 7 254Google Scholar
[3] Leach J, Jack B, Romero J, Jha A K, Yao A M, Frank-Arnold S, Ireland D G, Boyd R W, Barnett S M, Padgett M J 2010 Science 329 662Google Scholar
[4] Grier D 2003 Nature 424 810Google Scholar
[5] Beijersbergen M W, Coerwinkel R P C, Kristensen M, Woerdman J P 1994 Opt. Commun. 112 321Google Scholar
[6] Poynting J H 1909 Proc. R. Soc. London, Ser. A 82 560Google Scholar
[7] Marrucci L, Karimi E, Slussarenko S, Piccirillo B, Santamato E, Nagali E, Sciarrino, F 2011 J. Opt. 13 064001Google Scholar
[8] Zhao Z, Wang J, Li S, Willner A E 2013 Opt. Lett. 38 932Google Scholar
[9] Chen Y, Fang Z X, Ren Y X, Gong L, Lu R D 2015 Appl. Opt. 54 8030Google Scholar
[10] Li S, Mo Q, Hu X, Du C, Wang J 2015 Opt. Lett. 40 4376Google Scholar
[11] Zhang W, Wei K, Huang L, Mao D, Jiang B, Gao F, Zhao J 2016 Opt. Express 24 19278Google Scholar
[12] Shao L, Liu S, Zhou M, Huang Z, Bao W, Bai Z, Wang Y 2021 Opt. Express 29 43371Google Scholar
[13] Li Y J, Jin L, Wu H, Gao S C, Feng Y H, Li Z H 2017 IEEE Photonics J. 9 7200909Google Scholar
[14] Han Y, Liu Y G, Wang Z, Huang W, Chen L, Zhang H W, Yang K 2018 Nanophotonics 7 287Google Scholar
[15] Wu H, Gao S, Huang B, Feng Y, Huang X, Liu W, Li Z 2017 Opt. Lett. 42 5210Google Scholar
[16] Detani T, Zhao H, Wang P, Suzuki T, Li H 2021 Opt. Lett. 46 949Google Scholar
[17] He X, Tu J, Wu X, Gao S, Shen L, Hao C, Li Z 2020 Opt. Lett. 45 3621Google Scholar
[18] Pidishety S, Khudus M I M A, Gregg P, Ramachandran S, Srinivasan B, Brambilla G 2016 Conference on Lasers and Electro-Optics (CLEO) San Jose, CA, June 5–10, 2016 pSTu1F.2
[19] Li J, Ueda K, Musha M, Zhong L, Shirakawa A 2008 Opt. Lett. 33 2686Google Scholar
[20] Lin D, Xia K, Li J, Li R, Ueda K, Li G, Li X 2010 Opt. Lett. 35 2290Google Scholar
[21] Lin D, Xia K, Li R, Li X, Li G, Ueda K, Li J 2010 Opt. Lett. 35 3574Google Scholar
[22] Gui L, Wang C, Ding F, Chen H, Xiao X, Bozhevolnyi S, Zhang X, Xu K 2023 ACS Photonics 10 623
[23] Zhou N, Liu J, Wang J 2018 Sci. Rep. 8 11394Google Scholar
[24] Zhao Y, Wang T, Mao C, Yan Z, Liu Y, Wang T 2018 IEEE Photonics Technol. Lett. 30 752Google Scholar
[25] Toyoda K, Miyamoto K, Aoki N, Morita R, Omatsu T 2012 Nano Lett. 12 3645Google Scholar
[26] Zhang Z, Wei W, Tang L, Yang J, Guo J, Ding L, Li Y 2018 Chin. Opt. Lett. 16 110501Google Scholar
[27] Wang T, Wang F, Shi F, Pang F, Huang S, Wang T, Zeng X 2017 J. Lightwave Technol. 35 2161Google Scholar
[28] Deng D, Zhan L, Gu Z, Gu Y, Xia Y 2009 Opt. Express 17 4284Google Scholar
[29] Park K, Song K, Kim Y, Lee J, Kim B 2016 Opt. Express 24 3543Google Scholar
[30] Zhou H, Dong J, Wang J, Li S, Cai X, Yu S, Zhang X 2017 IEEE Photonics Technol. Lett. 29 86Google Scholar
[31] Mao D, Feng T, Zhang W, Lu H, Jiang Y, Li P, Jiang B, Sun Z, Zhao J 2017 Appl. Phys. Lett. 110 021107Google Scholar
[32] Huang Y, Shi F, Wang T, Liu X, Zeng X, Pang F, Wang T, Zhou P 2018 Opt. Express 26 19171Google Scholar
[33] Tao R, Li H, Zhang Y, Yao P, Xu L, Gu C, Zhan Q 2020 Opt. Laser Technol. 123 105945Google Scholar
[34] Xiao R, Tu J, Li Wei, Gao S, Wen T, Du C, Zhou J, Zhang B, Liu W, Li Z 2022 Opt. Express 30 12605Google Scholar
[35] Jiang X, Yao J, Zhang S, Wang A, Zhan Q 2022 Appl. Phys. Lett. 121 131101Google Scholar
[36] Zhang W, Wei K, Mao D, Wang H, Gao F, Huang L, Mei T, Zhao J 2017 Opt. Lett. 42 454Google Scholar
[37] Lu J, Shi F, Meng L, Zhang L, Teng L, Luo Z, Yan P, Pang F, Zeng X 2020 Photonics Res. 8 1203Google Scholar
[38] Hu H, Chen Z, Cao Q, Zhan Q 2023 IEEE Photonics J. 15 1Google Scholar
[39] Xue X, Jiang Q, Pang F, Wen J, Chen W, Zeng X, Zhang L, Wei H, Wang T 2023 Opt. Express 31 24623Google Scholar
[40] Fu S, Zhai Y, Zhang J, Liu X, Song R, Zhou H, Gao C 2022 Adv. Photonics Nexus 1 016003
Catalog
Metrics
- Abstract views: 2559
- PDF Downloads: 78
- Cited By: 0