-
Quantum light sources are one of key devices for quantum information processing, and they are also the important foundation for applications such as in quantum computing, quantum communication, and quantum simulation. Improving the capacity of quantum information coding by using the quantum light source is a major challenge in the development of quantum information technology. Photons with a helical phase front can carry a discrete, unlimited but quantized amount of orbital angular momentum (OAM). The infinite number of states with different OAMs can greatly increase the capacity of optical communication and information processing in quantum regimes. To date photons carrying OAM have mainly been generated by using bulk crystals, which limits the efficiency and the scalability of the source. With the advancement of quantum photonic technology, many significant quantum photonic devices can now be realized on integrated chips. However, creating high-dimensional OAM quantum states at a micro-nano scale is still a challenge. And the research of harnessing high-dimensional OAM mode by using integrated quantum photonic technologies is still in its infancy. Here, the authors review the recent progress and discuss the integrated quantum light sources with OAM. The authors introduce the research progress of using OAM for both single photons and entangled photons and emphasize the exciting work on pushing boundaries in high-dimensional quantum states. This may pave the way for the research and practical applications of high-dimensional quantum light sources.
-
Keywords:
- orbital angular momentum /
- quantum light source /
- integration /
- high-dimensional quantum state
[1] Flamini F, Spagnolo N, Sciarrino F 2018 Rep. Prog. Phys. 82 016001
Google Scholar
[2] Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365
Google Scholar
[3] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[4] Willner A E, Huang H, Yan Y, et al. 2015 Adv. Opt. Photonics 7 66
Google Scholar
[5] Shen Y, Wang X, Xie Z, et al. 2019 Light-Sci. Appl. 8 90
Google Scholar
[6] Romero J, Giovannini D, Franke-Arnold S, et al. 2012 Phys. Rev. A 86 012334
Google Scholar
[7] Fickler R, Lapkiewicz R, Plick W N, et al. 2012 Science 338 640
Google Scholar
[8] Krenn M, Handsteiner J, Fink M, Zeilinger A 2015 Proc. Natl. Acad. Sci. U. S. A. 112 14197
Google Scholar
[9] Krenn M, Handsteiner J, Fink M, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13648
Google Scholar
[10] Sit A, Bouchard F, Fickler R, et al. 2017 Optica 4 1006
Google Scholar
[11] Migdall A, Polyakov S V, Fan J, Bienfang J C 2013 Single-photon Generation and Detection: Physics and Application (Oxford: Academic Press
[12] Cai X, Wang J, Strain M J, et al. 2012 Science 338 363
Google Scholar
[13] Miao P, Zhang Z, Sun J, et al. 2016 Science 353 464
Google Scholar
[14] Zhang J, Sun C, Xiong B, et al. 2018 Nat. Commun. 9 2652
Google Scholar
[15] Chen B, Wei Y, Zhao T, et al. 2021 Nat. Nanotechnol. 16 302
Google Scholar
[16] Zhao H, Ma Y, Gao Z, et al. 2023 Phys. Rev. Lett. 131 183801
Google Scholar
[17] Zhang S, Li S, Feng X, et al. 2021 Photonics Res. 9 1865
Google Scholar
[18] Wu C, Kumar S, Kan Y, et al. 2022 Sci. Adv. 8 eabk3075
Google Scholar
[19] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313
Google Scholar
[20] Leach J, Jack B, Romero J, et al. 2010 Science 329 662
Google Scholar
[21] Fickler R, Campbell G, Buchler B, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13642
Google Scholar
[22] Zhang W, Ding D S, Dong M X, et al. 2016 Nature Commun. 14 13514
Google Scholar
[23] Liu S L, Zhou Q, Zhou Z Y, et al. 2019 Phys. Rev. A 100 013833
Google Scholar
[24] Cao H, Gao S C, Zhang C, et al. 2020 Optica 7 232
Google Scholar
[25] Zhang P, Ren X F, Zou X B, et al. 2007 Phys. Rev. A 75 052310
Google Scholar
[26] Zhou Z Y, Liu S L, Li Y, et al. 2016 Phys. Rev. Lett. 117 103601
Google Scholar
[27] Zhou Z Y, Li Y, Ding D S, et al. 2016 Light-Sci. Appl. 5 e16019
Google Scholar
[28] Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516
Google Scholar
[29] Stav T, Faerman A, Maguid E, et al. 2018 Science 361 1101
Google Scholar
[30] Ming Y, Zhang W, Tang J, et al. 2020 Laser Photonics Rev. 14 1900146
Google Scholar
[31] Suprano A, Zia D, Pont M, et al. 2023 Adv. Photonics 5 046008
Google Scholar
[32] Forbes A, Nape I 2019 AVS Quantum Sci. 1 011701
Google Scholar
[33] Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170
Google Scholar
[34] Chen B, Zhou Y, Liu Y, et al. 2024 Nat. Photonics 18 625
Google Scholar
-
图 2 微纳尺度下轨道角动量单光子源实现方案 (a) 嵌入量子点的微环谐振腔产生轨道角动量量子叠加态的单光子源[15]; (b) 二维材料与微环谐振腔的混合集成实现可调谐的轨道角动量单光子源[16]; (c) 片上集成预报式可调轨道角动量单光子源[17]; (d) 金刚石色心与阿基米德螺旋光栅集成化轨道角动量单光子源[18]
Figure 2. Schemes of orbital angular momentum single-photon sources at nanoscale: (a) Microring resonators embedded with quantum dots for the generation of single photons carrying quantum superposition states of OAM[15]; (b) the on-chip switchable twisted single photon source by hybrid integration of monolayer WSe2 and a microring resonator[16]; (c) the integrated heralded single-photon source with switchable OAM modes[17]; (d) the OAM single-photon source operation in layer-by-layer integration[18].
图 3 (a) 基于超构表面制备光子自旋角动量与轨道角动量之间的量子纠缠态[29]; (b) 基于叉形光栅非线性等离子体超构表面的非线性参量下转换过程产生的轨道角动量纠缠态[30]; (c) 利用量子点单光子源产生基于轨道角动量粒子内和粒子间纠缠态[31]; (d) 多光子高维纠缠态的制备方法对比及待开发领域[32]
Figure 3. (a) Entanglement between spin and OAM on a single photon by using a dielectric metasurface[29]; (b) the generation of OAM entangled state with fork-shaped metamaterials by parametric down conversion process in the nonlinear metamaterial[30]; (c) orbital angular momentum based intra- and interparticle entangled states generated via a quantum dot source[31]; (d) high-dimensional multiphoton entanglement process and a tremendous void that is yet to be filled[32].
-
[1] Flamini F, Spagnolo N, Sciarrino F 2018 Rep. Prog. Phys. 82 016001
Google Scholar
[2] Erhard M, Krenn M, Zeilinger A 2020 Nat. Rev. Phys. 2 365
Google Scholar
[3] Allen L, Beijersbergen M W, Spreeuw R J C, Woerdman J P 1992 Phys. Rev. A 45 8185
Google Scholar
[4] Willner A E, Huang H, Yan Y, et al. 2015 Adv. Opt. Photonics 7 66
Google Scholar
[5] Shen Y, Wang X, Xie Z, et al. 2019 Light-Sci. Appl. 8 90
Google Scholar
[6] Romero J, Giovannini D, Franke-Arnold S, et al. 2012 Phys. Rev. A 86 012334
Google Scholar
[7] Fickler R, Lapkiewicz R, Plick W N, et al. 2012 Science 338 640
Google Scholar
[8] Krenn M, Handsteiner J, Fink M, Zeilinger A 2015 Proc. Natl. Acad. Sci. U. S. A. 112 14197
Google Scholar
[9] Krenn M, Handsteiner J, Fink M, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13648
Google Scholar
[10] Sit A, Bouchard F, Fickler R, et al. 2017 Optica 4 1006
Google Scholar
[11] Migdall A, Polyakov S V, Fan J, Bienfang J C 2013 Single-photon Generation and Detection: Physics and Application (Oxford: Academic Press
[12] Cai X, Wang J, Strain M J, et al. 2012 Science 338 363
Google Scholar
[13] Miao P, Zhang Z, Sun J, et al. 2016 Science 353 464
Google Scholar
[14] Zhang J, Sun C, Xiong B, et al. 2018 Nat. Commun. 9 2652
Google Scholar
[15] Chen B, Wei Y, Zhao T, et al. 2021 Nat. Nanotechnol. 16 302
Google Scholar
[16] Zhao H, Ma Y, Gao Z, et al. 2023 Phys. Rev. Lett. 131 183801
Google Scholar
[17] Zhang S, Li S, Feng X, et al. 2021 Photonics Res. 9 1865
Google Scholar
[18] Wu C, Kumar S, Kan Y, et al. 2022 Sci. Adv. 8 eabk3075
Google Scholar
[19] Mair A, Vaziri A, Weihs G, Zeilinger A 2001 Nature 412 313
Google Scholar
[20] Leach J, Jack B, Romero J, et al. 2010 Science 329 662
Google Scholar
[21] Fickler R, Campbell G, Buchler B, et al. 2016 Proc. Natl. Acad. Sci. U. S. A. 113 13642
Google Scholar
[22] Zhang W, Ding D S, Dong M X, et al. 2016 Nature Commun. 14 13514
Google Scholar
[23] Liu S L, Zhou Q, Zhou Z Y, et al. 2019 Phys. Rev. A 100 013833
Google Scholar
[24] Cao H, Gao S C, Zhang C, et al. 2020 Optica 7 232
Google Scholar
[25] Zhang P, Ren X F, Zou X B, et al. 2007 Phys. Rev. A 75 052310
Google Scholar
[26] Zhou Z Y, Liu S L, Li Y, et al. 2016 Phys. Rev. Lett. 117 103601
Google Scholar
[27] Zhou Z Y, Li Y, Ding D S, et al. 2016 Light-Sci. Appl. 5 e16019
Google Scholar
[28] Wang X L, Cai X D, Su Z E, et al. 2015 Nature 518 516
Google Scholar
[29] Stav T, Faerman A, Maguid E, et al. 2018 Science 361 1101
Google Scholar
[30] Ming Y, Zhang W, Tang J, et al. 2020 Laser Photonics Rev. 14 1900146
Google Scholar
[31] Suprano A, Zia D, Pont M, et al. 2023 Adv. Photonics 5 046008
Google Scholar
[32] Forbes A, Nape I 2019 AVS Quantum Sci. 1 011701
Google Scholar
[33] Kues M, Reimer C, Lukens J M, et al. 2019 Nat. Photonics 13 170
Google Scholar
[34] Chen B, Zhou Y, Liu Y, et al. 2024 Nat. Photonics 18 625
Google Scholar
Catalog
Metrics
- Abstract views: 3862
- PDF Downloads: 239
- Cited By: 0